NNLO corrections for Drell-Yan and more

Daniel de Florian

Universidad de Buenos Aires

SM-BSM TH Institute CERN, August 2009

Exclusive NNLO calculations are in general very difficult: complicated pattern of IR (soft/collinear) singularities

- Exclusive NNLO calculations are in general very difficult: complicated pattern of IR (soft/collinear) singularities
- For some observables the situation can be dealt with a simpler extension of the subtraction method

Drell-Yan: no partons in final state \bigcirc LO $q_T=0$

$$d\sigma_{(N)NLO}^{V}|_{q_T \neq 0} = d\sigma_{(N)LO}^{V+\text{jet}}$$

S.Catani, L.Cieri, G.Ferrera, DdeF, M.Grazzini

remaining singularities appear only at $q_T = 0$

Missing one(two) loop contributions and factorization term: born-like kinematics

- All other singularities already handled by the (N)LO V+jet calculation
- If $q_T = 0$ included "NLOV+jet" full "NNLOV" (exclusive) computation

- All other singularities already handled by the (N)LO V+jet calculation
- If $q_T = 0$ included "NLOV+jet" full "NNLOV" (exclusive) computation
- At $q_T = 0$ regularize singularity with countertem add suitable contribution at $q_T = 0$

$$d\sigma^{V}_{(N)NLO} = \mathcal{H}^{V}_{(N)NLO} \otimes d\sigma^{V}_{LO} + \left[d\sigma^{V+\rm jet}_{(N)LO} - d\sigma^{CT}_{(N)LO} \right]$$
 born-like finite

lacktriangle Counterterm should match the $q_T o 0$ behaviour

Resummation of large logarithms at small transverse momentum

$$d\sigma^{CT} \sim d\sigma^{(LO)} \otimes \Sigma^H(q_T/Q)$$

$$\Sigma^{H}(q_{T}/Q) \sim \sum_{n=1}^{\infty} \left(\frac{\alpha_{S}}{\pi}\right)^{n} \sum_{k=1}^{2n} \Sigma^{H(n;k)} \frac{Q^{2}}{q_{T}^{2}} \ln^{k-1} \frac{Q^{2}}{q_{T}^{2}}$$

DdeF, M.Grazzini

Coefficients known at NNLO: universal structure for any process with non-colored particles in final state

lacktriangle Counterterm should match the $q_T o 0$ behaviour

Resummation of large logarithms at small transverse momentum

$$d\sigma^{CT} \sim d\sigma^{(LO)} \otimes \Sigma^H(q_T/Q)$$

$$\Sigma^{H}(q_T/Q) \sim \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n \sum_{k=1}^{2n} \Sigma^{H(n;k)} \frac{Q^2}{q_T^2} \ln^{k-1} \frac{Q^2}{q_T^2}$$

DdeF, M.Grazzini

Coefficients known at NNLO: universal structure for any process with non-colored particles in final state

lacktriangle Coefficient $\mathcal{H}^{V}_{(N)NLO}$ to restore normalization from same program

$$\mathcal{H}^{V} = 1 + \frac{\alpha_{\mathrm{S}}}{\pi} \mathcal{H}^{V(1)} + \left(\frac{\alpha_{\mathrm{S}}}{\pi}\right)^{2} \mathcal{H}^{V(2)} + \dots$$

G.Bozzi, S.Catani, DdeF, M.Grazzini

from
$$\int_0^{p_T^2} dq_T^2 \, \frac{d\hat{\sigma}^V}{dq_T^2} \qquad \qquad p_T^2 \ll M_V^2$$

lacktriangle Counterterm should match the $q_T o 0$ behaviour

Resummation of large logarithms at small transverse momentum

$$d\sigma^{CT} \sim d\sigma^{(LO)} \otimes \Sigma^H(q_T/Q)$$

$$\Sigma^{H}(q_T/Q) \sim \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n \sum_{k=1}^{2n} \Sigma^{H(n;k)} \frac{Q^2}{q_T^2} \ln^{k-1} \frac{Q^2}{q_T^2}$$

DdeF, M.Grazzini

Coefficients known at NNLO: universal structure for any process with non-colored particles in final state

lacktriangle Coefficient $\mathcal{H}^V_{(N)NLO}$ to restore normalization from same program

$$\mathcal{H}^{V} = 1 + \frac{\alpha_{S}}{\pi} \mathcal{H}^{V(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2} \mathcal{H}^{V(2)} + \dots$$

G.Bozzi, S.Catani, DdeF, M.Grazzini

from
$$\int_0^{p_T^2} dq_T^2 \, \frac{d\hat{\sigma}^V}{dq_T^2} = \hat{\sigma}_{\text{inclusive}}^V - \int_{p_T^2}^{\infty} dq_T^2 \, \frac{d\hat{\sigma}^V}{dq_T^2} \qquad p_T^2 \ll M_V^2$$

Up to now, Inclusive needed for Exclusive

Just one example

NLO from MCFM

$$m_T = \sqrt{2p_T^l p_T^{ ext{miss}} (1 - \cos \phi)}$$

Cuts: $p_T^{ ext{miss}} > 25 \, ext{GeV}$
 $p_T^l > 20 \, ext{GeV} \, \left| \eta \right| < 2$

- Public code available soon (compared to FEWZ K.Melnikov, F.Petriello)
- Exclusive Higgs calculation implemented with the same procedure S.Catani, M.Grazzini

Just one example

NLO from MCFM

$$m_T = \sqrt{2p_T^l p_T^{ ext{miss}} (1 - \cos \phi)}$$

Cuts: $p_T^{ ext{miss}} > 25 \, ext{GeV}$
 $p_T^l > 20 \, ext{GeV} \, |\eta| < 2$

- Public code available soon (compared to FEWZ K.Melnikov, F.Petriello)
- Exclusive Higgs calculation implemented with the same procedure S.Catani, M.Grazzini
- Work in progress

Use universal structure of soft/collinear emission to find ${\cal H}$ coefficient for any process without partons in final state

pp — any number of gauge/Higgs bosons