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 Exclusive NNLO calculations are in general very difficult: 
                             complicated pattern of IR (soft/collinear) singularities



Drell-Yan:
no partons in
final state 
@LO 

 For some observables the situation can be dealt with a simpler extension 
of the subtraction method 

 Exclusive NNLO calculations are in general very difficult: 
                             complicated pattern of IR (soft/collinear) singularities

remaining singularities appear only at qT = 0

dσV
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Missing one(two) loop contributions and factorization term : born-like kinematics
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Coefficients known at NNLO:  universal structure
for any process with non-colored particles in final state 
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Coefficients known at NNLO:  universal structure
for any process with non-colored particles in final state 

V + jet(s). Thus, we can write the cross section as

dσV
(N)NLO|qT !=0 = dσV +jets

(N)LO . (2)

This means that, when qT != 0, the IR divergences in our NNLO calculation are those in dσV +jets
NLO :

they can be treated by using available NLO methods to handle and cancel IR singularities (e.g.,
the general NLO methods in Refs. [10, 11, 12]). The only remaining singularities of NNLO type
are associated to the limit qT → 0. Following Ref. [8] we treat them by an additional subtraction.
Our key point is that the singular behaviour of dσV +jets

(N)LO when qT → 0 is well known: it comes
out in the resummation program [25] of logarithmically-enhanced contributions to transverse-
momentum distributions. Therefore, the additional subtraction can be worked out by using a
counterterm, dσCT

(N)LO, whose general structure [8] depends only on the flavour of the initial-
state partons involved in the LO partonic subprocess (qq̄ annihilation in the case of vector-boson
production, gg fusion in the case of Higgs boson production).

Our extension of Eq. (2) to include the contribution at qT = 0 is [8]:

dσV
(N)NLO = HV

(N)NLO ⊗ dσV
LO +

[
dσV +jets

(N)LO − dσCT
(N)LO

]
. (3)

Comparing with the right-hand side of Eq. (2), we have subtracted the (N)LO counterterm dσCT
(N)LO

and added a contribution at qT = 0, which is needed to obtain the correct total cross section.
The coefficient HV

(N)NLO does not depend on qT and is obtained by the (N)NLO truncation of the
hard-scattering perturbative function

HV = 1 +
αS

π
HV (1) +

(αS

π

)2
HV (2) + . . . . (4)

According to Eq. (3), the NLO calculation of dσV requires the knowledge of HV (1) and the LO
calculation of dσV +jets. The general (process-independent) form of the coefficient H(1) is known:
the precise relation between H(1) and the IR finite part of the one-loop correction to a generic
LO subprocess is explicitly derived in Ref. [26]. At NNLO, the coefficient HV (2) is also needed,
together with the NLO calculation of dσV +jets. The calculation of the general structure of the
coefficients H(2) is in progress. Meanwhile, by using the available analytical results at O(α2

S) for
the total cross section [3] and the transverse-momentum spectrum [27] of the vector boson, we have
explicitly computed the coefficient HV (2) of the DY process. Since the NLO corrections dσV +jets

NLO

to qq̄ → V +jet(s) are also available [28], using Eq. (3) we are able to complete our fully-exclusive
NNLO calculation of vector-boson production.

We have encoded our NNLO computation in a parton level Monte Carlo program, in which
we can implement arbitrary IR safe cuts on the final-state leptons and the associated jet activity.

In the following we present an illustrative selection of numerical results forZ and W production
at the Tevatron and the LHC. We consider u, d, s, c, b quarks in the initial state. In the case of W±

production, we use the (unitarity constrained) CKM matrix elements Vud = 0.97419, Vus = 0.2257,
Vub = 0.00359, Vcd = 0.2256, Vcs = 0.97334, Vcb = 0.0415 from the PDG 2008 [29]. In the case of Z
production, additional Feynman diagrams with fermionic triangles should be taken into account.
Their contribution cancels out for each isospin multiplet when massless quarks are considered. The
effect of a finite top-quark mass in the third generation has been considered and found extremely
small [30], so it is neglected in our calculation. As for the electroweak couplings, we use the so
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Figure 3: Transverse mass distribution for W production at the Tevatron.

the W is produced with zero transverse momentum: therefore, the requirement pmiss
T > 25 GeV

sets mT ≥ 50 GeV. Around the region where mT = 50 GeV there are perturbative instabilities
in going from LO to NLO and to NNLO. The origin of these perturbative instabilities is well
known [34]: since the LO spectrum is kinematically bounded by mT ≥ 50 GeV, each higher-
order perturbative contribution produces (integrable) logarithmic singularities in the vicinity of
the boundary. We also note that, below the boundary, the NNLO corrections to the NLO result
are large; for example, they are about +40% at mT ∼ 30 GeV. This is not unexpected, since
in this region of transverse masses, the O(αS) result corresponds to the calculation at the first
perturbative order and, therefore, our O(α2

S) result is actually only a calculation at the NLO level
of perturbative accuracy.

We have illustrated a calculation of the cross section for W and Z boson production up to
NNLO in QCD perturbation theory. An analogous computation was presented in Ref. [5]. Our
calculation uses a different and completely independent method. Performing some quantitative
studies of cross sections and acceptancies, we have found that the results of two computations agree
within the corresponding numerical accuracy. Our calculation is directly implemented in a parton
level event generator. This feature makes it particularly suitable for practical applications to the
computation of distributions in the form of bin histograms. Our program produces numerically
stable NNLO results for cross sections and associated distributions. For example, the typical size
of the error bars of the NNLO results in the plots of Figs. 1–3 is at the level of about 1%. Higher
numerical accuracy is achieved in the case of integrated distributions and cross sections. A public
version of our program will be available in the near future.

Acknowledgements. We thank Stefan Dittmaier for useful correspondence.
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 Public code available soon (compared to FEWZ K.Melnikov, F.Petriello )

 Exclusive Higgs calculation implemented with the same procedure
 S.Catani, M.Grazzini
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Use universal structure of soft/collinear emission
to find      coefficient for any process without
partons in final state 
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