How well can the LHC distinguish between a light Higgs and the Higgsless case using all available VV scattering channels?

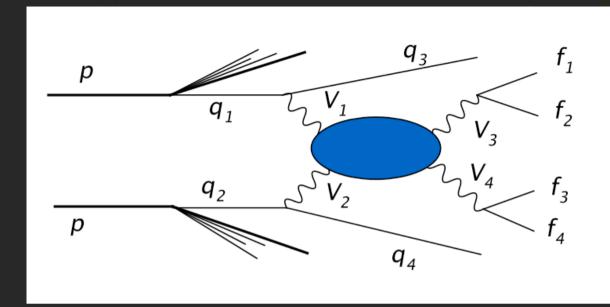
A bit more catchy than "A combined analysis"

A.Ballestrero, G.Bevilacqua, D.Buarque Franzosi, E.Maina Univ. of Torino, INP NCSR Demokritos

VV scattering and Unitarity

$$\epsilon_T = \left(0; \pm \frac{1}{\sqrt{2}}, \frac{-i}{\sqrt{2}}, 0\right) \qquad \epsilon_L = \frac{1}{m_W} \left(|\vec{k}|; 0, 0, E_W\right) \qquad \vec{k}//\hat{z}$$

For
$$E_W\gg m_W$$
 $\epsilon_L^\mu pprox {k^\mu\over m_W}$


$$\epsilon_{W^+}^L \cdot \epsilon_{W^-}^L \approx \frac{k_{W^+} \cdot k_{W^-}}{m_W^2} = \frac{s}{m_W^2} \longrightarrow D_i \propto \frac{k_{W^+} \cdot k_{W^-}}{m_W^2} \frac{k_{W^+} \cdot k_{W^-}}{m_W^2} = \frac{s^2}{m_W^4}$$

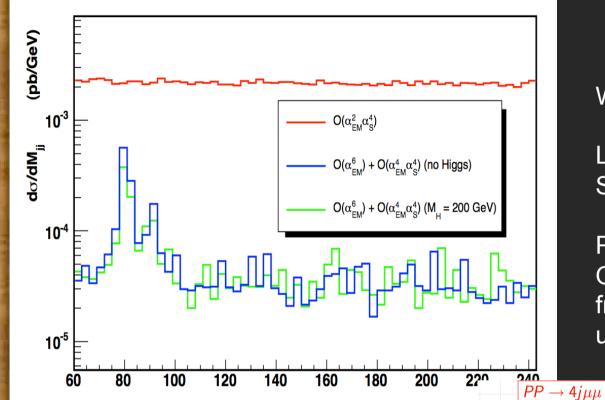
$$\sum_{w}^{w} \sum_{v,z}^{w} \sum_{w}^{w} \sum_$$

$$\Sigma \propto s$$

$$\Sigma_{all} \approx s^0$$

LHC:2j+VV

PDF \rightarrow d σ /dM $_{VV}$ decreases at large M $_{VV}$ Look for possible increases in VV+2j production wrt SM


VV → 2j+2l semileptonic channels "Large" rate, Large bkg: QCD V+4j, tt

VV → 4l leptonic channels "Small" rate, Small bkg O(α_s²), mimicks signal

Models

- Large number of BSM models for VV scattering
- New states? KK, unitarization, Goldstone boson?
 What mass, spin?
- Effective Lagrangian language: model independent framework
- Higgs as pseudo-Goldstone from strong interaction breaking:Strongly Interacting Light Higgs: Higgs in the Low Energy spectrum with modified couplings
 → modified VV scattering
- No Higgs benchmark for heavy, broad resonances, upper limit for SILH

Ballestrero, Bevilacqua, EM JHEP05(2009)015 $W(\mu\nu)+4j$

W4j QCD bkg large (now at NLO)

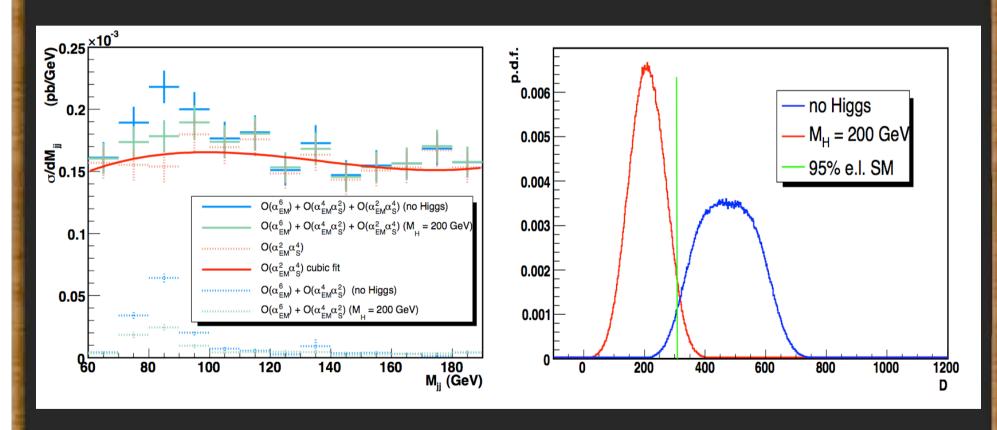
Large uncertainties in dσ/dM_{VV} Spread over large range

Peak in M_{jcjc} due to V→jj QCD W4j flat in region: measure from sidebands, get rid of theory uncertainties

Basic cuts only

$$\mathcal{O}(\alpha_{\mathsf{EM}}^6) + \mathcal{O}(\alpha_{\mathsf{EM}}^4 \alpha_{\mathsf{S}}^2) + \mathcal{O}(\alpha_{\mathsf{EM}}^2 \alpha_{\mathsf{S}}^4)$$

 $PP \rightarrow 4j\mu\nu$ $PP \rightarrow 2j\ell^+\ell^-\mu\nu$


QCD Singly-Resonant Background V + 4 jets Generated with MADEVENT

Probability of finding a result outside the SM 95%CL region assuming NoHiggs is realized

D = S+B-

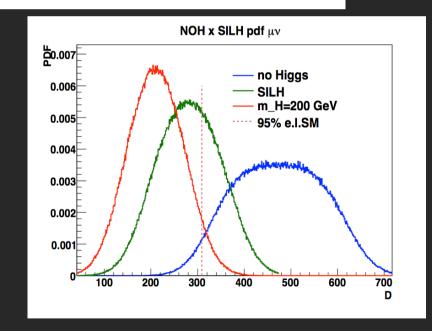
S: statistical uncertainty + theory ± 30% on <S> flat

B: stat only, extrapolated from sidebands

PBSM96%CL 96.8% L=200 fb⁻¹ e+ μ M_{VV}>600GeV Δ R=0.3

New results: $Z(\mu\mu)+4j$, $Z(II)W(\mu\nu)+2j$ SM,NoHiggs,SILH

W+4j


M_{cut}	no Higgs		SILH		$M_H = 200 \text{ GeV}$
(GeV)	$\sigma(\mathrm{fb})$	PBSM	$\sigma(\mathrm{fb})$	PBSM	$\sigma(\mathrm{fb})$
600	6.07(1.18)	96.5%	5.59(0.704)	35.9%	5.41(0.524)
800	3.76(0.779)	96.8%	3.40(0.418)	29.2%	3.29(0.309)
1000	2.26(0.483)	95.4%	2.01(0.227)	19.8%	1.94(0.169)
1200	1.32(0.263)	83.9%	1.19(0.132)	16.9%	1.15(0.094)

Main effect of SILH: modified VVH couplings

 $\xi = v^2/f^2$ gm_V \rightarrow gm_V (1-c_H $\xi/2$)

Use $(1-c_H\xi/2)=1/sqrt(2)$ A(VV \rightarrow VV) $\approx \frac{1}{2} s/v^2$

Z+4j 10 times smaller, ZW+2j handful of events

Can signature of SILH be detected?

Conclusions(?)

Results for W=4j, Z+4j, ZW+2j for SM, NoH, one SILH case More details if desired

- What can be really extracted from VV scattering?
- Can we agree on benchmark models?
- Which channels do we need?
- Does all this survive in the harsh experimental environment?