

Short update from CTEQ

J. Huston

Michigan State University

for the 'TEA' group

(Tung et al)

Ongoing work

NLO

- CT09 (presented by J. Pumplin at last PDF4LHC meeting)
 - ▲ arXiv: 0904.2424 (to appear in PRD)
- inclusion of Tevatron Run 2 data (but retaining Run 1 data->different energy, wider rapidity coverage)
- I'll show a few updated slides
- LO(*)
 - CTMC1, CTMC2 (1-loop, 2-loop α_s modified LO PDF's for Monte Carlos), presented by me at last PDF4LHC meeting
 - draft completed; some results for tuning to be shown today
- Combined (q_T, x) fits, simultaneous fits of PDF's and non-perturbative parameters for p_T distributions of Drell-Yan processes; correlation information for precision determinations of W mass at Tevatron and LHC
 - draft in progress
- NNLO PDF's
 - in progress
- Data set diagonalization: J. Pumplin
 - arXiv:0904.2425; talk in May meeting

CDF Run 2 jet results

Full disclosure for experimentalists

- Every cross section should be quoted at the hadron level with an explicit correction given between the hadron and parton levels (if possible)
- More the exception than the rule at the Tevatron

TABLE IX: Measured inclusive jet cross sections as a function of p_T for jets in the region 0.1 < |y| < 0.7 together with the statistical (stat.) and systematic (sys.) uncertainties. The bin-by-bin parton-to-hadron-level ($C_{p\to h}$) corrections are also shown. Fregions. The correction is derived from PYTHIA (solid line statistical (stat.) and systematic (sys.) uncertainties.

$pT \ (\mathrm{GeV}/c)$	$0.1 < y < 0.7$ $\sigma \pm (stat.) \pm (sys.)$ $[nb/(GeV/c)]$	$C_{p \to h}$
62 - 72	$(6.28 \pm 0.04^{+0.59}) \times 10^{0}$	1.072 ± 0.108
72 - 83	$(2.70 \pm 0.02^{+0.26}_{-0.25}) \times 10^{0}$	1.055 ± 0.088
83 - 96	$(1.15 \pm 0.01^{+0.11}) \times 10^{0}$	1.041 ± 0.071
96 - 110	$(1.88 \pm 0.03^{+0.51}_{-0.11}) \times 10^{-1}$ $(2.07 \pm 0.01^{+0.22}_{-0.21}) \times 10^{-1}$ $(8.50 \pm 0.04^{+0.98}_{-0.91}) \times 10^{-2}$ $(3.30 \pm 0.01^{+0.41}_{-0.38}) \times 10^{-2}$ $(1.24 \pm 0.01^{+0.17}_{-0.15}) \times 10^{-2}$	1.030 ± 0.057
110 - 127	$(2.07 \pm 0.01^{+0.22}_{-0.21}) \times 10^{-1}$	1.022 ± 0.045
127 - 146	$(8.50 \pm 0.04^{+0.98}_{-0.91}) \times 10^{-2}$	1.015 ± 0.035
146 - 169	$(3.30 \pm 0.01^{+0.41}_{-0.38}) \times 10^{-2}$	1.010 ± 0.027
169 - 195	$(1.24 \pm 0.01^{+0.17}_{-0.15}) \times 10^{-2}$	1.006 ± 0.020
195 - 224	$(4.55 \pm 0.05^{+0.6}) \times 10^{-3}$	1.003 ± 0.014
224 - 259	$\begin{array}{c} (1.56 \pm 0.01^{+0.25}_{-0.23}) \times 10^{-3} \\ (4.94 \pm 0.06^{+0.91}_{-0.80}) \times 10^{-4} \\ (1.42 \pm 0.02^{+0.30}_{-0.26}) \times 10^{-4} \\ (3.53 \pm 0.08^{+0.85}_{-0.73}) \times 10^{-5} \end{array}$	1.002 ± 0.010
259 - 298	$(4.94 \pm 0.06^{+0.91}_{-0.80}) \times 10^{-4}$	1.001 ± 0.006
298 - 344	$(1.42 \pm 0.02^{+0.30}_{-0.36}) \times 10^{-4}$	1.000 ± 0.003
344 - 396	$(3.53 \pm 0.08^{+0.85}_{-0.73}) \times 10^{-5}$	1.001 ± 0.001
396 - 457	$(6.87 \pm 0.35^{+1.64}_{-1.64}) \times 10^{-6}$	1.001 ± 0.000
457 - 527	$(1.22 \pm 0.13^{+0.40}_{-0.34}) \times 10^{-6}$	1.003 ± 0.001
527 - 700	$(1.22 \pm 0.13^{+0.40}_{-0.34}) \times 10^{-6}$ $(7.08 \pm 1.97^{+3.09}_{-2.54}) \times 10^{-8}$	1.005 ± 0.001

note the correction rapidly approaches unity

D0 Run 2 jet results

- Preference for a weaker high x gluon?
- Pushing towards lower end of CTEQ6.5 pdf uncertainty band

From Jon's talk in May (and CT09 paper)

- Run I and Run II jet measurements consistent with each other
- Can test by assigning higher weight to a particular experiment and seeing by how much χ^2 of other jet data (and of non-jet data) increases

CI	CDF _I D0 _I		Ο0 _I	CDF_{II}		$D0_{II}$		$\Delta \chi^2$	
Wt	χ^2	Wt	χ^2	Wt	χ^2	Wt	χ^2	non-jet	
0	55.4	0	115.3	0	99.5	0	134.0	0.0	
1	52.6	1	47.0	0	105.6	0	138.3	11.8	
0	56.6	0	82.2	1	85.6	1	124.1	6.2	
1	52.1	1	59.4	1	88.5	1	121.5	9.6	
1	54.8	1	58.8	10	80.3	10	120.0	39.4	
10	53.1	10	38.6	1	102.6	1	142.3	21.9	
10	51.6	10	49.7	10	82.8	10	120.9	39.6	
1	59.6	1	67.5	10	75.2	1	130.9	32.0	
1	50.6	1	60.0	1	93.0	10	116.5	20.6	

CDF/D0 Run II jet data compared to CT09 predictions

Red is uncorrected, blue is after systematic error corrections in global fit

Each systematic error shift is of the order of 1 sigma or less, with

standard penalty in global fit

P₊ (GeV)

Comparison of gluons

- Sizeable differences in large x gluon behavior between CT and MSTW pdf's
- At high Q, very close in rest of x range

High x gluon

CT09 not yet in LHAPDF

Mod LO pdf's

- Both 2-loop α_s and 1-loop α_s versions
- Mod LO W⁺ rapidity distribution agrees better with NLO prediction in both magnitude and shape
- Agreement at 10 TeV (not in fit) even better

W+ rapidity distribution

Results

Results

K-factors smaller using mod LO pdf's

	Typical scales		Tevatron K -factor			LHC K-factor			
Process	μ_0	μ_1	$\mathcal{K}(\mu_0)$	$\mathcal{K}(\mu_1)$	$\mathcal{K}'(\mu_0)$	$\mathcal{K}(\mu_0)$	$\mathcal{K}(\mu_1)$	$\mathcal{K}'(\mu_0)$	$\mathcal{K}''(\mu_0)$
W	m_W	$2m_W$	1.33	1.31	1.21	1.15	1.05	1.15	0.95
W+1jet	m_W	$p_T^{ m jet}$	1.42	1.20	1.43	1.21	1.32	1.42	0.99
W+2jets	m_W	$p_T^{ m jet}$	1.16	0.91	1.29	0.89	0.88	1.10	_
WW+jet	m_W	$2m_W$	1.19	1.37	1.26	1.33	1.40	1.42	_
$t\bar{t}$	m_t	$2m_t$	1.08	1.31	1.24	1.40	1.59	1.19	1.09
$t\bar{t}+1$ jet	m_t	$2m_t$	1.13	1.43	1.37	0.97	1.29	1.10	
$b\bar{b}$	m_b	$2m_b$	1.20	1.21	2.10	0.98	0.84	2.51	_
Higgs	m_H	$p_T^{ m jet}$	2.33	_	2.33	1.72	_	2.32	1.43
Higgs via VBF	m_H	$p_T^{ m jet}$	1.07	0.97	1.07	1.23	1.34	0.85	0.75
Higgs+1jet	m_H	$p_T^{ m jet}$	2.02	_	2.13	1.47	_	1.90	1.33
Higgs+2jets	m_H	$p_T^{ m jet}$	_	_	_	1.15	_	_	1.13

Table 3: K-factors for various processes at the LHC calculated using a selection of input parameters. Have to fix this table. In all cases, the CTEQ6M PDF set is used at NLO. \mathcal{K} uses the CTEQ6L1 set at leading order, whilst \mathcal{K}' uses the same set, CTEQ6M, as at NLO and \mathcal{K}'' uses the modified LO (2-loop) PDF set. For Higgs+1,2jets, a jet cut of 40 GeV/c and $|\eta| < 4.5$ has been applied. A cut of $p_T^{\rm jet} > 20~GeV/c$ has been applied for the $t\bar{t}$ +jet process, and a cut of $p_T^{\rm jet} > 50~GeV/c$ for WW+jet. In the $W({\rm Higgs})$ +2jets process the jets are separated by $\Delta R > 0.52$, whilst the VBF calculations are performed for a Higgs boson of mass 120 GeV. In each case the value of the K-factor is compared at two often-used scale choices, where the scale indicated is used for both renormalization and factorization scales.

for W < 1.0. since for this table the comparison is to CTEQ6.1 and not to CTEQ6.6, i.e. corrections to low x PDFs due to treatment of heavy quarks in CTEQ6.6 "built-in" to mod LO PDFs

Note K-factor

Some PDF comparisons

- The 2-loop modified LO PDF is similar to CTEQ6L at low x and to CTEQ6.6 at high x, as designed
- Also shown for comparison is the mrst2007lomod gluon PDF

Mini-jet production

 ...will be especially sensitive to gluons in x range of 1E-05 to 1E-02

LHC parton kinematics

Plots from Markus Warsinsky

- Low x gluon not so different from CTEQ6L(1), so relatively easy to tune underlying event
- See Liza Mijoviv talk on Friday

Conclusions

- Broad range of pdf-related analysis from CTEQ/TEA group
- Hope to have combined fit and NNLO results to present in the near future