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Why?

(n + 1)-jet rate not necessarily small compared to n-jet rate
Inclusive (hard) perturbative corrections important for e.g. hard
end of W p | -spectrum.

How?

Establish universal behaviour of radiative corrections (in the
so-called High Energy Limit)

Supplement with constraint on sub-asymptotic behaviour
(gauge-invariance and analyticity)

| \

A\



Introduction
L]

Resummation and Matching

Consider the perturbative expansion of an observable
R=rg+ras+ rz(zz + r3a3 + r4a4 + -

Fixed order pert. QCD will calculate a fixed number of terms in this
expansion. r, may contain logarithms so that a; In(- - - )is large.

R=ro+(rf"In(-- ) + 1P as+ (rzLL () + Y In(--) + rfL) a4

=ro+ > ri(asin(---)"+> rias(asIn(- - ))"+sub-leading terms
n n

Need simplifying assumptions to get to all orders - useful iff the terms
really do describe the dominant part of the full pert. series .
Matching combines best of both worlds

R=rg + Mas + o + (r?EL N3 )+ 3 ) + rBSL) a4
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Factorisation of QCD Matrix Elements

It is well known that QCD matrix elements factorise in certain
kinematical limits:

Soft limit — eikonal approximation — enters all parton
shower (and much else) resummation.

Like all good limits, the eikonal approximation is applied
outside its strict region of validity

Will discuss the less well-studied factorisation  of scattering
amplitudes in a different kinematic limit, better suited for
describing perturbative corrections from hard parton emission

Factorisation only becomes exact in a region outside the
reach of any collider. ..
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The Possibility for Predictions of n-jet Rates
The Power of Reggeisation

Kb, Yb

Ka,Ya
High Energy Limit
- Ks, Y3

K2,Y2

t| fixed, § — oo
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0 i=1
i :ka+2:;11 k|

Maintain (at LL) terms of the form

to all orders in as.

n I g
LY (H ee@) i1y Y (q.,q.H)) ()00 —vni1) 878

qizqal q§+l

LL: Fadin, Kuraev, Lipatov; NLL: Fadin, Fiore, Kozlov, Reznichenko

At LL only gluon production; at
NLL also quark—anti-quark pairs
produced.

Approximation of any-jet rate pos-
sible.
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Comparison of 3-jet scattering amplitudes

Universal behaviour of scattering amplitudes in the HE limit:

—MRK |2 4s2 g2Cy 492Ca\ 92 Ca
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‘MMRK 2 45?2 ?G (T149%G) 02 C
Q=R N2 =1 [pr P\ L2 [P ) [pa

Allow for analytic resummation (BFKL equation).
However, how well does this actually approximate the
amplitude?
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Comparison of 3-jet scattering amplitudes

Study just a slice in phase space:
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Comparison of 3-jet scattering amplitudes

Study just a slice in phase space:
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Correct limitis obtained - but outside LHC phase space. Limit alone irrelevant.
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Comparison of 3-jet scattering amplitudes

Study just a slice in phase space:
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Correct limitis obtained - but outside LHC phase space. Limit alone irrelevant.
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Comparison of 3-jet scattering amplitudes

Study just a slice in phase space:
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Correct limitis obtained - but outside LHC phase space. Limit alone irrelevant.

Universality obtained before limit is reached.



Regge/FKL Factorisation
[e]e] lelele]e]

Comparison of 3-jet scattering amplitudes

Study just a slice in phase space:
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Correct limitis obtained - but outside LHC phase space. Limit alone irrelevant.
Universality obtained before limit is reached.

Will build frame-work which has the right MRK limit but also retains correct

behaviour at smaller rapidities
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Building Blocks for an Amplitude

Identification of the dominant contributions  to the
perturbative series in the limit of well-separated particles
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Jets @ LHC
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Jets @ LHC
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W+Jets @ LHC

= 500 T T T T T T g
= Full ME
_;ﬂs
>" t-channel factorised ME
S 40
A lyl<4.5,ly [<2.5
§35 p p40GeV, p  >20GeV
2 MSTW2008NLO) 7, 440GV
3
3 30 Kiet(R=0.7), pp @ VE=10TeV
3
25
200 E
150F E
100 E
50 —
o) == N A N I AR AR M~
0 1 2 3 4 5 6 7 8

A
ylal

o



Regge/FKL Factorisation
0O0000e0

W+Jets @ LHC
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W+Jets @ LHC
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W+Jets @ LHC
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Outlook and Conclusions

Conclusions

@ Emerging framework for the study of processes with
multiple hard jets

@ For each number of particles n, the approximation to the
matrix element (real and virtual) is sufficiently simple to
allow for the all-order summation to be constructed as an
explicit sum over n-particle final states (exclusive studies
possible)

@ Resummation based on approximation which really does
capture the behaviour of the scattering processes at the
LHC

@ Matching will correct the approximation where the full
matrix element can be evaluated
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