All-order Corrections to Multi-jet Rates using *t*-channel Factorised Scattering Matrix Elements

Jeppe R. Andersen (CERN) in collaboration with Jenni Smillie

SM and BSM physics at the LHC August 11, 2009

What, Why, How?

What?

Develop a framework for reliably calculating many-parton rates inclusively (ensemble of 2, 3, 4, ... parton rates) and in a flexible way (jets, W+jets, Z+jets, Higgs+jets,...)

Why?

(n+1)-jet rate not necessarily small compared to n-jet rate inclusive (hard) perturbative corrections important for e.g. hard end of W p_{\perp} -spectrum.

How?

Establish universal behaviour of radiative corrections (in the so-called High Energy Limit)

Supplement with constraint on sub-asymptotic behaviour (gauge-invariance and analyticity)

What, Why, How?

What?

Develop a framework for reliably calculating many-parton rates inclusively (ensemble of $2,3,4,\ldots$ parton rates) and in a flexible way (jets, W+jets, Z+jets, Higgs+jets,...)

Why?

(n+1)-jet rate not necessarily small compared to n-jet rate Inclusive (hard) perturbative corrections important for e.g. hard end of W p_{\perp} -spectrum.

How?

Establish universal behaviour of radiative corrections (in the so-called High Energy Limit)

Supplement with constraint on sub-asymptotic behaviour (gauge-invariance and analyticity)

What, Why, How?

What?

Develop a framework for reliably calculating many-parton rates inclusively (ensemble of 2, 3, 4, ... parton rates) and in a flexible way (jets, W+jets, Z+jets, Higgs+jets,...)

Why?

(n+1)-jet rate not necessarily small compared to n-jet rate Inclusive (hard) perturbative corrections important for e.g. hard end of W p_{\perp} -spectrum.

How?

Establish universal behaviour of radiative corrections (in the so-called High Energy Limit)

Supplement with constraint on sub-asymptotic behaviour (gauge-invariance and analyticity)

Resummation and Matching

Consider the **perturbative expansion** of an observable

$$R = r_0 + r_1 \alpha_s + r_2 \alpha^2 + r_3 \alpha^3 + r_4 \alpha^4 + \cdots$$

Fixed order pert. QCD will calculate a fixed number of terms in this expansion. r_n may contain **logarithms** so that $\alpha_s \ln(\cdots)$ is large.

$$R = r_0 + \left(r_1^{LL} \ln(\cdots) + r_1^{NLL}\right) \alpha_s + \left(r_2^{LL} \ln^2(\cdots) + r_2^{NLL} \ln(\cdots) + r_2^{SL}\right) \alpha_s^2 + \cdots$$

$$= r_0 + \sum_n r_n^{LL} (\alpha_s \ln(\cdots))^n + \sum_n r_n^{NLL} \alpha_s (\alpha_s \ln(\cdots))^n + \text{sub-leading terms}$$

Need simplifying assumptions to get to all orders - useful **iff the terms** really do describe **the dominant part** of the **full pert. series**. **Matching** combines **best of both worlds**:

$$R = r_0 + r_1 \alpha_s + r_2 \alpha^2 + \left(r_3^{LL} \ln^3(\cdots) + r_3^{NLL} \ln^2(\cdots) + r_3^{SL} \right) \alpha^3 + \cdots$$

It is well known that QCD matrix elements factorise in certain kinematical limits:

Soft limit → eikonal approximation → enters all parton shower (and much else) resummation.

It is **well known** that QCD matrix elements **factorise** in certain kinematical limits:

Soft limit \rightarrow eikonal approximation \rightarrow enters all parton shower (and much else) resummation.

Like all good limits, the eikonal approximation is applied outside its strict region of validity.

Will discuss the **less well-studied factorisation** of scattering amplitudes in a different kinematic limit, better suited for describing perturbative corrections from **hard parton emission**

Factorisation only **becomes exact** in a region **outside** the reach of any collider...

It is **well known** that QCD matrix elements **factorise** in certain kinematical limits:

Soft limit \rightarrow eikonal approximation \rightarrow enters all parton shower (and much else) resummation.

Like all good limits, the eikonal approximation is applied outside its strict region of validity.

Will discuss the **less well-studied factorisation** of scattering amplitudes in a different kinematic limit, better suited for describing perturbative corrections from **hard parton emission**

Factorisation only **becomes exact** in a region **outside** the reach of any collider...

It is **well known** that QCD matrix elements **factorise** in certain kinematical limits:

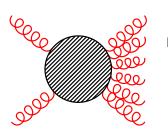
Soft limit \rightarrow eikonal approximation \rightarrow enters all parton shower (and much else) resummation.

Like all good limits, the eikonal approximation is applied outside its strict region of validity.

Will discuss the **less well-studied factorisation** of scattering amplitudes in a different kinematic limit, better suited for describing perturbative corrections from **hard parton emission**

Factorisation only **becomes exact** in a region **outside** the reach of any collider...

The Possibility for Predictions of *n*-jet Rates The Power of Reggeisation



High Energy Limit

$$\hat{\mathbf{s}} \mid \mathbf{s} \rightarrow \infty$$

00000000

20000

 $\mathbf{K_3}, \mathbf{y}_3$

00000

 $\mathbf{k_1}, \mathbf{y_1}$

k, γ Γριβ

$$\mathcal{A}_{2\to 2+n}^{R} = \frac{\Gamma_{A'A}}{q_0^2} \left(\prod_{i=1}^{n} e^{\omega(q_i)(y_{i-1}-y_i)} \frac{V^{J_i}(q_i, q_{i+1})}{q_i^2 q_{i+1}^2} \right) e^{\omega(q_{n+1})(y_n - y_{n+1})} \frac{\Gamma_{B'B}}{q_{n+1}^2}$$

 $q_i = \mathbf{k}_a + \sum_{l=1}^{i-1} \mathbf{k}_l$

LL: Fadin, Kuraev, Lipatov; NLL: Fadin, Fiore, Kozlov, Reznichenko

Maintain (at LL) terms of the form

$$\left(\alpha_{s} \ln \frac{\hat{\mathsf{s}}_{ij}}{|\hat{t}_{i}|}\right)$$

to all orders in α_s .

At LL only gluon production; at NLL also quark—anti-quark pairs produced.

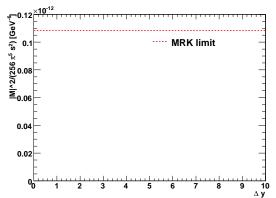
Approximation of any-jet rate possible.

Universal behaviour of scattering amplitudes in the HE limit:

$$\begin{split} \left| \overline{\mathcal{M}}_{gg \to g \cdots g}^{MRK} \right|^2 &= \frac{4 \ s^2}{N_C^2 - 1} \ \frac{g^2 \ C_A}{|p_{1 \perp}|^2} \left(\prod_{i=2}^{n-1} \frac{4 \ g^2 C_A}{|p_{i \perp}|^2} \right) \frac{g^2 \ C_A}{|p_{n \perp}|^2}. \\ \left| \overline{\mathcal{M}}_{qg \to qg \cdots g}^{MRK} \right|^2 &= \frac{4 \ s^2}{N_C^2 - 1} \ \frac{g^2 \ C_F}{|p_{1 \perp}|^2} \left(\prod_{i=2}^{n-1} \frac{4 \ g^2 C_A}{|p_{i \perp}|^2} \right) \frac{g^2 \ C_A}{|p_{n \perp}|^2}, \\ \left| \overline{\mathcal{M}}_{qQ \to qg \cdots Q}^{MRK} \right|^2 &= \frac{4 \ s^2}{N_C^2 - 1} \ \frac{g^2 \ C_F}{|p_{1 \perp}|^2} \left(\prod_{i=2}^{n-1} \frac{4 \ g^2 C_A}{|p_{i \perp}|^2} \right) \frac{g^2 \ C_F}{|p_{n \perp}|^2}, \end{split}$$

Allow for analytic resummation (BFKL equation). However, how well does this actually approximate the amplitude?

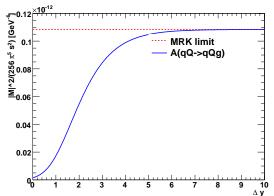
Study just a slice in phase space:



Correct limit is obtained - but outside LHC phase space. Limit alone irrelevant. Universality obtained before limit is reached.

Will build frame-work which has the right MRK limit but also retains correct behaviour at smaller rapidities

Study just a slice in phase space:

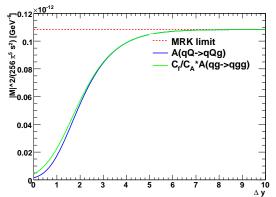


Correct limit is obtained - but outside LHC phase space. Limit alone irrelevant.

Universality obtained before limit is reached.

Will build frame-work which has the right MRK limit but also retains correct behaviour at smaller rapidities

Study just a slice in phase space:

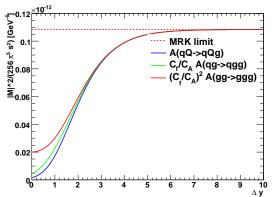


Correct limit is obtained - but outside LHC phase space. Limit alone irrelevant.

Universality obtained before limit is reached.

Will build frame-work which has the right MRK limit but also retains correct behaviour at smaller rapidities

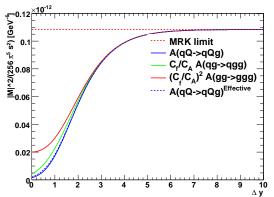
Study just a slice in phase space:



Correct limit is obtained - but outside LHC phase space. Limit alone irrelevant. Universality obtained before limit is reached.

Will build frame-work which has the right MRK limit but also retains correct behaviour at smaller rapidities

Study just a slice in phase space:



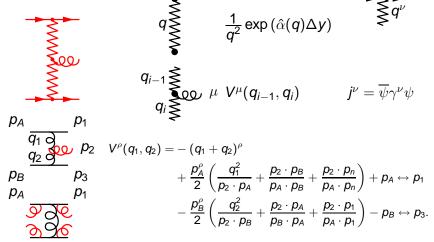
Correct limit is obtained - but outside LHC phase space. Limit alone irrelevant. Universality obtained before limit is reached.

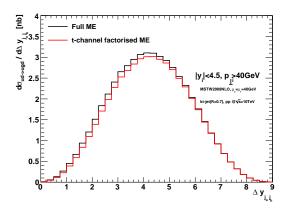
Will build frame-work which has the right MRK limit but also retains correct behaviour at smaller rapidities

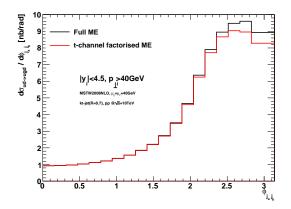
 p_B

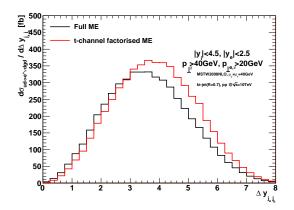
Building Blocks for an Amplitude

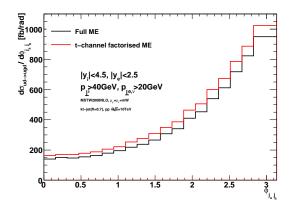
Identification of the **dominant contributions** to the **perturbative series** in the limit of well-separated particles

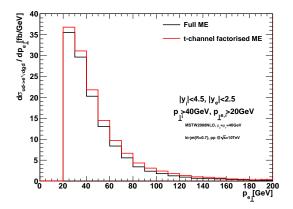


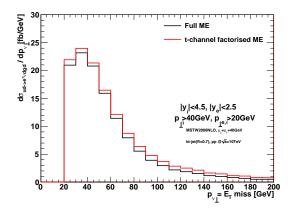












Outlook and Conclusions

Conclusions

- Emerging framework for the study of processes with multiple hard jets
- For each number of particles n, the approximation to the matrix element (real and virtual) is sufficiently simple to allow for the all-order summation to be constructed as an explicit sum over n-particle final states (exclusive studies possible)
- Resummation based on approximation which really does capture the behaviour of the scattering processes at the LHC
- Matching will correct the approximation where the full matrix element can be evaluated