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Introduction Regge/FKL Factorisation

What, Why, How?

What?

Develop a framework for reliably calculating many-parton rates
inclusively (ensemble of 2,3,4, . . . parton rates) and in a
flexible way (jets, W+jets, Z+jets, Higgs+jets,. . . )

Why?

(n + 1)-jet rate not necessarily small compared to n-jet rate
Inclusive (hard) perturbative corrections important for e.g. hard
end of W p⊥-spectrum.

How?

Establish universal behaviour of radiative corrections (in the
so-called High Energy Limit)
Supplement with constraint on sub-asymptotic behaviour
(gauge-invariance and analyticity)
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Resummation and Matching

Consider the perturbative expansion of an observable

R = r0 + r1αs + r2α
2 + r3α

3 + r4α
4 + · · ·

Fixed order pert. QCD will calculate a fixed number of terms in this
expansion. rn may contain logarithms so that αs ln(· · · )is large.

R = r0+
(

rLL
1 ln(· · · ) + rNLL

1

)

αs+
(

rLL
2 ln2(· · · ) + rNLL

2 ln(· · · ) + rSL
2

)

α2
s +· · ·

= r0+
∑

n

rLL
n (αs ln(· · · ))n+

∑

n

rNLL
n αs(αs ln(· · · ))n+sub-leading terms

Need simplifying assumptions to get to all orders - useful iff the terms
really do describe the dominant part of the full pert. series .
Matching combines best of both worlds :

R = r0 + r1αs + r2α
2 +

(

rLL
3 ln3(· · · ) + rNLL

3 ln2(· · · ) + rSL
3

)

α3 + · · ·
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Factorisation of QCD Matrix Elements

It is well known that QCD matrix elements factorise in certain
kinematical limits:
Soft limit → eikonal approximation → enters all parton
shower (and much else) resummation.

Like all good limits, the eikonal approximation is applied
outside its strict region of validity .

Will discuss the less well-studied factorisation of scattering
amplitudes in a different kinematic limit, better suited for
describing perturbative corrections from hard parton emission

Factorisation only becomes exact in a region outside the
reach of any collider. . .
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The Possibility for Predictions of n-jet Rates
The Power of Reggeisation

High Energy Limit
−→

|̂t | fixed, ŝ → ∞

ka, y0 =

k1, y1

k2, y2

k3, y3

k4, y4

kb, yb

AR
2→2+n =

ΓA′A

q2
0

 

n
Y

i=1

eω(qi)(yi−1−yi )
V Ji (qi , qi+1)

q2
i q2

i+1

!

eω(qn+1)(yn−yn+1) ΓB′B

q2
n+1

qi =ka+
Pi−1

l=1 kl LL: Fadin, Kuraev, Lipatov; NLL: Fadin, Fiore, Kozlov, Reznichenko

Maintain (at LL) terms of the form
„

αs ln
ŝij

|̂ti |

«

to all orders in αs.

At LL only gluon production; at
NLL also quark–anti-quark pairs
produced.
Approximation of any-jet rate pos-
sible.
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Comparison of 3-jet scattering amplitudes

Universal behaviour of scattering amplitudes in the HE limit:

∣

∣

∣
M

MRK
gg→g···g

∣

∣

∣

2
=

4 s2

N2
C − 1

g2 CA

|p1⊥|2

(

n−1
∏

i=2

4 g2CA

|pi⊥|2

)

g2 CA

|pn⊥|2
.

∣

∣

∣
M

MRK
qg→qg···g

∣

∣

∣

2
=

4 s2

N2
C − 1

g2 CF

|p1⊥|2

(

n−1
∏

i=2

4 g2CA

|pi⊥|2

)

g2 CA

|pn⊥|2
,

∣

∣

∣
M

MRK
qQ→qg···Q

∣

∣

∣

2
=

4 s2

N2
C − 1

g2 CF

|p1⊥|2

(

n−1
∏

i=2

4 g2CA

|pi⊥|2

)

g2 CF

|pn⊥|2
,

Allow for analytic resummation (BFKL equation).
However, how well does this actually approximate the
amplitude?
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Comparison of 3-jet scattering amplitudes

Study just a slice in phase space:
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Correct limit is obtained - but outside LHC phase space. Limit alone irrelevant.
Universality obtained before limit is reached.
Will build frame-work which has the right MRK limit but also retains correct

behaviour at smaller rapidities
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Building Blocks for an Amplitude

Identification of the dominant contributions to the
perturbative series in the limit of well-separated particles

q 1
q2 exp (α̂(q)∆y)

qν

qi−1

qi

µ V µ(qi−1,qi) jν = ψγνψ

q2

q1

pB

pA

p3

p2

p1

pB

pA

p3

p1

V ρ(q1, q2) = − (q1 + q2)
ρ

+
pρ

A

2

„

q2
1

p2 · pA
+

p2 · pB

pA · pB
+

p2 · pn

pA · pn

«

+ pA ↔ p1

−
pρ

B

2

„

q2
2

p2 · pB
+

p2 · pA

pB · pA
+

p2 · p1

pA · p1

«

− pB ↔ p3.
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Jets @ LHC
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W+Jets @ LHC
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W+Jets @ LHC
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W+Jets @ LHC
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Outlook and Conclusions

Conclusions

Emerging framework for the study of processes with
multiple hard jets

For each number of particles n, the approximation to the
matrix element (real and virtual) is sufficiently simple to
allow for the all-order summation to be constructed as an
explicit sum over n-particle final states (exclusive studies
possible)

Resummation based on approximation which really does
capture the behaviour of the scattering processes at the
LHC

Matching will correct the approximation where the full
matrix element can be evaluated
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