Multiple Parton Interactions, top-antitop, W+4j and Z+4j production at the LHC

Ezio Maina University of Torino

Double interaction in a finely segmented detector

Facts and questions

- MPI established experimentally eg: γ+3j
- Each interaction hard enough to be treated by perturbative QCD
- $\sigma_{DPI} = \sigma_1 \sigma_2 / \sigma_{eff} / k$ $\sigma_{eff} \approx 14.5 \text{ mb}$ CDF k=1,2
- $\sigma_{TPI} = \sigma_1 \sigma_2 \sigma_3 / \sigma'_{eff} / k$ $\sigma'_{eff} = \sigma_{eff}$?

Treleani argues for σ_{eff}≈12 mb at the LHC

- Can MPI be a background to interesting physics?
- Can MPI be studied in more complex environment than $2\rightarrow 2\otimes 2\rightarrow 2$?

Flavour dependence, x-dependence

MPI,SPI,DPI,TPI: Multiple,Single,Double,Triple Parton Interactions

Method: $\sigma_1 \otimes \sigma_2 \otimes \dots$

- Generate events for the two processes separately: eg jj, jjW with MadEvent
- Superimpose one event from each sample
- No check on energy conservation (trivial to add)
- No flavour correlations (Treleani up to 40% reduction)
- No color correlations (irrelevant at generator level)
- Analyze: impose cuts on combined events

Single Parton Interactions: PHANTOM & MadEvent

t-tbar production: an ideal playground

- Early measurement at the LHC
- M_{top} is a fundamental parameter for the SM
- Best channel: semileptonic lv+4j
- Main background W+4j: 5 body final state

100 pb⁻¹ No b-tagging Reconstruct from mass of jet triplet with largest pT Main background: W+4j

1 fb⁻¹ b-tagging Full reconstruction of final state Main background: misidentification and combinatorics

$$egin{aligned} p_{T_j} & \geq 30 \; \mathrm{GeV} \,, \; \; |\eta_j| \leq 5.0 \,, \ & \ p_{T_\ell} & \geq 20 \; \mathrm{GeV} \,, \; \; |\eta_\ell| \leq 3.0 \,, \ & \ M_{jj} & \geq 60 \, \mathrm{GeV} \end{aligned}$$

generation cuts

LHC luminosity: Low 30 fb⁻¹/year High 100 fb⁻¹/year Total 300 fb⁻¹/year

Process	Cross section	Combined
jj	1.44e8 pb	4.03 pb
$jj(\mu^-ar{ u_\mu} + \mu^+ u_\mu)$	6.54e2 pb	4.03 pb
jjj	7.64e6 pb	0.68 pb
$j(\mu^-\bar{\nu_\mu} + \mu^+\nu_\mu)$	1.82e3 pb	0.06 pb
jjjj	1.16e6 pb	0.88 pb
$\mu^-ar{ u_\mu} + \mu^+ u_\mu$	1.09e4 pb	0.66 pb

Process	Cross section	Combined
jj	1.44e8 pb	
jj	1.44e8 pb	$0.27~\mathrm{pb}$
$\mu^- \bar{\nu_\mu} + \mu^+ \nu_\mu$	1.09e4 pb	

Process	Cross section	Cross section
$\mathcal{O}(lpha_{\scriptscriptstyle EM}^4lpha_{\scriptscriptstyle S}^2)$	$25.0~\mathrm{pb}$	22.0 pb
$\mathcal{O}(lpha_{\scriptscriptstyle EM}^2lpha_{\scriptscriptstyle S}^4)$	64.7 pb	58.9 pb
$\mathcal{O}(lpha_{\scriptscriptstyle EM}^2lpha_{\scriptscriptstyle S}^4)_{ m DPI}$	5.6 pb	5.3 pb
$\mathcal{O}(lpha_{\scriptscriptstyle EM}^2lpha_{\scriptscriptstyle S}^4)_{ m TPI}$	$0.27~\mathrm{pb}$	0.26 pb
$\mathcal{O}(lpha_{\scriptscriptstyle EM}^6)$	0.22 pb	0.20 pb

MPI

t-tbar

W+4j

DPI

TPI

EW negligible

$$\Delta R(jj) > 0.5$$
 $\Delta R(jl^{\pm}) > 0.5$

Isolation cuts

$$M_{top} = 175 \text{ GeV}$$

 M_{jjj} = mass of jet triplet with max pT

$$W \to \mu v \qquad \text{only} \qquad$$

Process	Cross section
$\mathcal{O}(lpha_{\scriptscriptstyle EM}^4lpha_{\scriptscriptstyle S}^2)$	10.8 pb
$\mathcal{O}(lpha_{\scriptscriptstyle EM}^2lpha_{\scriptscriptstyle S}^4)$	0.76 pb
$\mathcal{O}(lpha_{\scriptscriptstyle EM}^2lpha_{\scriptscriptstyle S}^4)_{ m DPI}$	0.12 pb
$\mathcal{O}(lpha_{\scriptscriptstyle EM}^2lpha_{\scriptscriptstyle S}^4)_{ m TPI}$	0.01 pb
$\mathcal{O}(lpha_{\scriptscriptstyle EM}^6)$	0.04 pb

Not a problem for mass measurement. Cross section? Negligible when b-tagging available

Looking for MPI in Iv

+4j

- Get rid of t-tbar |M_{iii}-M_t|>10 GeV

Process	Cross section
$\mathcal{O}(lpha_{EM}^4lpha_S^2)$	1.16 pb
$\mathcal{O}(lpha_{\scriptscriptstyle EM}^2lpha_{\scriptscriptstyle S}^4)$	24.01 pb
$\mathcal{O}(\alpha_{\scriptscriptstyle EM}^2 \alpha_{\scriptscriptstyle S}^4)_{ m DPI}$	2.91 pb
$\mathcal{O}(\alpha_{\scriptscriptstyle EM}^2 \alpha_{\scriptscriptstyle S}^4)_{ m TPI}$	0.16 pb
$\mathcal{O}(lpha_{\scriptscriptstyle EM}^6)$	$0.05~\mathrm{pb}$

Process	Cross section	Cross section
${\cal O}(lpha_{\scriptscriptstyle EM}^4lpha_{\scriptscriptstyle S}^2)$	25.0 pb	22.0 pb
$\mathcal{O}(lpha_{\scriptscriptstyle EM}^2lpha_{\scriptscriptstyle S}^4)$	64.7 pb	58.9 pb
$\mathcal{O}(lpha_{\scriptscriptstyle EM}^2lpha_{\scriptscriptstyle S}^4)_{ m DPI}$	5.6 pb	5.3 pb
$\mathcal{O}(lpha_{\scriptscriptstyle EM}^2lpha_{\scriptscriptstyle S}^4)_{ m TPI}$	0.27 pb	0.26 pb
$\mathcal{O}(\alpha_{\scriptscriptstyle EM}^6)$	0.22 pb	0.20 pb

Basic cuts

Iso cuts

only

ij⊗ijW is dominant \rightarrow expect $\Delta \phi = \pi$ jet pair as in γ+3j or Z+3j

jjj⊗jW} no such

feature

 $|\Delta\phi(jj)_{\rm max}| > 0.9 \cdot \pi$

Process	Cross section
$\mathcal{O}(lpha_{\scriptscriptstyle EM}^4lpha_{\scriptscriptstyle S}^2)$	0.75 pb
$\mathcal{O}(lpha_{\scriptscriptstyle EM}^2lpha_{\scriptscriptstyle S}^4)$	15.61 pb
$\mathcal{O}(lpha_{\scriptscriptstyle EM}^2lpha_{\scriptscriptstyle S}^4)_{ m DPI}$	2.61 pb
$\mathcal{O}(lpha_{\scriptscriptstyle EM}^2lpha_{\scriptscriptstyle S}^4)_{ m TPI}$	0.16 pb
$\mathcal{O}(lpha_{\scriptscriptstyle EM}^6)$	0.03 pb

MPI/tot = 17%

Triple Parton Interactions: so far unobserved

Two jet pairs back to back in the transverse plane

DY W with "zero" pT (also in DPI: less effective)

Process	Cross section
$\mathcal{O}(lpha_{\scriptscriptstyle EM}^4lpha_{\scriptscriptstyle S}^2)$	$0.75~\mathrm{pb}$
$\mathcal{O}(lpha_{\scriptscriptstyle EM}^2lpha_{\scriptscriptstyle S}^4)$	15.61 pb
$\mathcal{O}(lpha_{\scriptscriptstyle EM}^2lpha_{\scriptscriptstyle S}^4)_{ m DPI}$	2.61 pb
$\mathcal{O}(lpha_{\scriptscriptstyle EM}^2lpha_{\scriptscriptstyle S}^4)_{ m TPI}$	0.16 pb
$\mathcal{O}(lpha_{\scriptscriptstyle EM}^6)$	0.03 pb

 $|\Delta\phi(jj)_{\rm max}| > 0.9 \cdot \pi$

TPI/DPI/Bkg 1 / 16 /100

1600 events for L=10 fb⁻¹ TPI more than 50% of last bin: 2 deg.

Looking for MPI in $Z(I^+I^-)+4j$

$$egin{aligned} p_{T_j} &\geq 30 \,\, \mathrm{GeV} \,, \ |\eta_j| \leq 5.0 \,, \ p_{T_\ell} &\geq 20 \,\, \mathrm{GeV} \,, \ |\eta_\ell| \leq 3.0 \,, \ M_{jj} &\geq 60 \,\, \mathrm{GeV} \,, \ M_{ll} &\geq 20 \,\, \mathrm{GeV} \ \Delta R(jj) > 0.5 \quad \Delta R(jl^\pm) > 0.5 \ |\Delta \eta(j_f j_b)| > 3.8 \end{aligned}$$

Dasic	В	a	S	i	C
-------	---	---	---	---	---

S

Delta_jfjb

Process	Cross section	Cross section	Cross section
${\cal O}(lpha_{EM}^4lpha_{S}^2)$	106.6 fb	87.7 fb	26.3 fb
${\cal O}(lpha_{EM}^2lpha_S^4)$	6404.67 fb	5626.6 fb	2209.7 fb
$\mathcal{O}(lpha_{\scriptscriptstyle EM}^2lpha_{\scriptscriptstyle S}^4)_{ m DPI}$	515.5 fb	469.1 fb	272.7 fb
$\mathcal{O}(lpha_{\scriptscriptstyle EM}^2lpha_{\scriptscriptstyle S}^4)_{ m TPI}$	23.2 fb	21.4 fb	15.1 fb
${\cal O}(lpha_{\scriptscriptstyle EM}^6)$	16.5 fb	13.9 fb	7.6 fb

S/B
$$\frac{1}{2}$$
 = 5.8(6.1)
L=1 fb⁻¹

MPI/4jW=1/8

Z's much easier to identify; No bkg from b-quark decays

Looking for MPI in W+/-W+/-+0j

Can only be produced with at least two additional jet in SPI: $\alpha^2_s \alpha^4$, α^6 In DPI it can be produced as DY \otimes DY: α^4 leptonic decays included

WW→eµ only

$$p_{T_{\ell}} \ge 20 \text{ GeV}, \ |\eta_{\ell}| \le 3.0$$

No j with $p_{T_j} \geq 30 \; \mathrm{GeV}$

Process	Cross section	Cross section
$\mathcal{O}(lpha_{\scriptscriptstyle EM}^6) + \mathcal{O}(lpha_{\scriptscriptstyle EM}^4lpha_{\scriptscriptstyle S}^2)$	13.67 fb	$0.86 \; \mathrm{fb}$
$\mathcal{O}(lpha_{\scriptscriptstyle EM}^4)_{ m DPI}$	4.30 fb	4.30 fb

Conclusions

MPI provide a small but non negligible background to t-tbar if no b-tag available

MPI can be studied in W+4j and Z+4j channels above QCD background exploiting $\Delta \phi = \pi$ jet pairs

TPI can hopefully be measured in W+4j production

More careful analysis including correlations between interactions needed