Exceptional Supersymmetric Standard Model - Singlet SUSY models - E₆SSM and TeV spectrum - Unification - Solving the flavour problem - Constrained E₆SSM - Dark matter from inert higgsinos/neutralinos - Leptogenesis # Singlet SUSY Models To solve the μ problem of the MSSM and reduce fine tuning led to consider: W= λ SHuHd where singlet <S> $\sim \mu$ But leads to weak scale axion due to global U(1) PQ symmetry Need to remove axion somehow In NMSSM we add S³ to break U(1) PQ to Z_3 In USSM we gauge the U(1) PQ symmetry to eat the axion resulting in a massive Z' gauge boson – but not anomaly free In E_6 SSM the anomalies of the USSM are cancelled by three complete 27's of E_6 at the TeV scale with U(1) PQ \in E_6 ## E₆SSM top-down SFK, Moretti, Nevzorov $$E_6 \rightarrow SO(10) \times U(1)_{\psi} \qquad SO(10) \rightarrow SU(5) \times U(1)_{\chi} \qquad E_6 \text{ broken via SU}(5) \text{ chain}$$ Right handed neutrinos are neutral under: $$U(1)_N = \frac{\sqrt{15}}{4}U(1)_{\psi} + \frac{1}{4}U(1)_{\chi} \longrightarrow Z'(N)$$ $$M_{\text{GUT}} \longrightarrow M_{\text{GUT}}$$ RH v masses $$M_3 \longrightarrow M_2 \longrightarrow M_2$$ $$M_1 \longrightarrow M_2 \longrightarrow M_1$$ Quarks, Triplets Singlets leptons and Higgs and RHv s unification and leptogenesis $$M_1 \longrightarrow M_2 \longrightarrow M_1$$ Play role in unification and leptogenesis $$M_2 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow M_2$$ Play role in unification and leptogenesis $$M_3 \longrightarrow M_2 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow$$ ### Matter content of E₆SSM at TeV Plus a TeV scale Z'(N) Plus all their SUSY superpartners Message: E₆SSM predicts SUSY+ 3(5+5*+1) + Z' at LHC ## Unification in E₆SSM with L' ## Unification in E₆SSM without L' Low energy (below M_{GUT}) three complete families of 27's of E_6 High energy (above $M_{GUT} \sim 10^{16}$ GeV) this is embedded into a Pati-Salam model and additional heavy Higgs are added. #### Solving the flavour problem in the E₆SSM - 1) Usual flavour problem of SM: why three families with the observed fermion (including neutrino) masses and mixings? - 2) Additional flavour problem of MSSM: why are FCNCs and CP violating processes (esp. EDMs) so small? - 3) Further problem of E_6 SSM: why do three families of Higgs give small FCNCs? In MSSM 1),2) solved by Δ_{27} Varzielas, SFK, Ross; Antusch, Malinsky et al In E₆SSM also 3) solved by Δ_{27} SFK, Howl e.g. matter in (3,27) of Δ_{27} x E₆ → TB mixing, 2 degenerate LSPs, 2 degenerate D-fermions Resulting model resembles constrained E₆SSM # The Constrained E₆SSM $$W \approx \lambda_i SH_{u,i}H_{d,i} + \kappa_i SD_i \overline{D}_i \quad \text{EWSB, LEP, 2-loop RGE}$$ | Low Mass Benchmark Points | A | В | C | D | |---------------------------|--------|-------|--------|--------| | $\tan \beta$ | 3 | 10 | 10 | 10 | | $\lambda_3(M_X)$ | -0.465 | -0.37 | -0.378 | -0.395 | | $\lambda_{1,2}(M_X)$ | 0.1 | 0.1 | 0.1 | 0.1 | | $\kappa_3(M_X)$ | 0.3 | 0.2 | 0.42 | 0.43 | | $\kappa_{1,2}(M_X)$ | 0.3 | 0.2 | 0.06 | 0.08 | | s[TeV] | 3.3 | 2.7 | 2.7 | 2.7 | | $M_{1/2}[{ m GeV}]$ | 365 | 363 | 388 | 358 | | $m_0 [{\rm GeV}]$ | 640 | 537 | 681 | 623 | | $A_0[\mathrm{GeV}]$ | 798 | 711 | 645 | 757 | #### cE₆SSM Low Mass Benchmarks Athron, SFK, Miller, Moretti, Nevzorov #### Dark Matter from Inert Higgsinos/singlinos 3 families of Higgs = 1 MSSM family H_u , $H_d + 2$ inert families H_{u1} , H_{d1} , H_{u2} , H_{d2} 3 families of Singlets = 1 NMSSM singlet S + 2 inert singlets S_1 , S_2 Expect almost decoupled inert sector \rightarrow good dark matter candidate Δ_{27} predicts $A_{11}=A_{22}=0$ \rightarrow 2 degenerate LSPs #### Leptogenesis in the E₆SSM SFK, Luo, Miller, Nevzorov Three families of Higgs Four families of Leptons Three families of Leptoquarks - ullet L₄ is vector like $M_4 L_4 \overline{L}_4$ M₄ \sim few TeV for GUT <u>unification</u> - L₄, H^u_{1,2},D_k contribute to leptogenesis but not neutrino mass - Can get very large asymmetries, hence constraint M₁>10⁸ GeV from leptogenesis is relaxed - e.g. leptogenesis in E₆SSM allows e.g. M₁= 100 TeV - → no gravitino problem #### Conclusion - **E**₆SSM well motivated by FT and μ problems - Predicts matter in three 27 families at TeV scale + Z' - Unification is preserved - Flavour problems solved by non-Abelian family symmetry → model resembles cE₆SSM - cE₆SSM predicts rich phenomenology at LHC e.g. 2 degenerate D-fermions, Z', light gauginos - Two degenerate LSPs from inert Higgsinos/singlinos provide novel WIMP candidates - Leptogenesis significantly enhanced by extra states such as Higgs, L' leptons and D leptoquarks which allows light right-handed neutrinos e.g. 100 TeV # Scenario 1: Effect of extra leptons L₄ alone (extra Higgs and leptoquark couplings set to zero) Both plots are in plane of H₃L₄N_{1,2} Yukawa couplings # Scenario 2: Effect of extra Higgs H^u₂ alone (extra lepton and leptoquark couplings set to zero) Both plots are in plane of H^u₂L₃N_{1,2} Yukawa couplings # Scenario 3: Effect of extra leptoquarks D_k alone (extra Higgs and lepton couplings set to zero) Both plots are in plane of D₃d₃N_{1,2} Yukawa couplings