Exceptional Supersymmetric Standard Model

- Singlet SUSY models
- E₆SSM and TeV spectrum
- Unification
- Solving the flavour problem
- Constrained E₆SSM
- Dark matter from inert higgsinos/neutralinos
- Leptogenesis

Singlet SUSY Models

To solve the μ problem of the MSSM and reduce fine tuning led to consider: W= λ SHuHd where singlet <S> $\sim \mu$

But leads to weak scale axion due to global U(1) PQ symmetry

Need to remove axion somehow

In NMSSM we add S³ to break U(1) PQ to Z_3

In USSM we gauge the U(1) PQ symmetry to eat the axion resulting in a massive Z' gauge boson – but not anomaly free

In E_6 SSM the anomalies of the USSM are cancelled by three complete 27's of E_6 at the TeV scale with U(1) PQ \in E_6

E₆SSM top-down

SFK, Moretti, Nevzorov

$$E_6 \rightarrow SO(10) \times U(1)_{\psi} \qquad SO(10) \rightarrow SU(5) \times U(1)_{\chi} \qquad E_6 \text{ broken via SU}(5) \text{ chain}$$
 Right handed neutrinos are neutral under:
$$U(1)_N = \frac{\sqrt{15}}{4}U(1)_{\psi} + \frac{1}{4}U(1)_{\chi} \longrightarrow Z'(N)$$

$$M_{\text{GUT}} \longrightarrow M_{\text{GUT}}$$
 RH v masses
$$M_3 \longrightarrow M_2 \longrightarrow M_2$$

$$M_1 \longrightarrow M_2 \longrightarrow M_1$$
 Quarks, Triplets Singlets leptons and Higgs and RHv s unification and leptogenesis
$$M_1 \longrightarrow M_2 \longrightarrow M_1$$
 Play role in unification and leptogenesis
$$M_2 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow M_2$$
 Play role in unification and leptogenesis
$$M_3 \longrightarrow M_2 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow$$

Matter content of E₆SSM at TeV

Plus a TeV scale Z'(N)

Plus all their SUSY superpartners

Message: E₆SSM predicts SUSY+ 3(5+5*+1) + Z' at LHC

Unification in E₆SSM with L'

Unification in E₆SSM without L'

Low energy (below M_{GUT}) three complete families of 27's of E_6

High energy (above $M_{GUT} \sim 10^{16}$ GeV) this is embedded into a Pati-Salam model and additional heavy Higgs are added.

Solving the flavour problem in the E₆SSM

- 1) Usual flavour problem of SM: why three families with the observed fermion (including neutrino) masses and mixings?
- 2) Additional flavour problem of MSSM: why are FCNCs and CP violating processes (esp. EDMs) so small?
- 3) Further problem of E_6 SSM: why do three families of Higgs give small FCNCs?

In MSSM 1),2) solved by Δ_{27} Varzielas, SFK, Ross; Antusch, Malinsky et al

In E₆SSM also 3) solved by Δ_{27} SFK, Howl

e.g. matter in (3,27) of Δ_{27} x E₆

→ TB mixing, 2 degenerate LSPs, 2 degenerate D-fermions

Resulting model resembles constrained E₆SSM

The Constrained E₆SSM

$$W \approx \lambda_i SH_{u,i}H_{d,i} + \kappa_i SD_i \overline{D}_i \quad \text{EWSB, LEP, 2-loop RGE}$$

Low Mass Benchmark Points	A	В	C	D
$\tan \beta$	3	10	10	10
$\lambda_3(M_X)$	-0.465	-0.37	-0.378	-0.395
$\lambda_{1,2}(M_X)$	0.1	0.1	0.1	0.1
$\kappa_3(M_X)$	0.3	0.2	0.42	0.43
$\kappa_{1,2}(M_X)$	0.3	0.2	0.06	0.08
s[TeV]	3.3	2.7	2.7	2.7
$M_{1/2}[{ m GeV}]$	365	363	388	358
$m_0 [{\rm GeV}]$	640	537	681	623
$A_0[\mathrm{GeV}]$	798	711	645	757

cE₆SSM Low Mass Benchmarks Athron, SFK, Miller, Moretti, Nevzorov

Dark Matter from Inert Higgsinos/singlinos

3 families of Higgs = 1 MSSM family H_u , $H_d + 2$ inert families H_{u1} , H_{d1} , H_{u2} , H_{d2}

3 families of Singlets = 1 NMSSM singlet S + 2 inert singlets S_1 , S_2

Expect almost decoupled inert sector \rightarrow good dark matter candidate Δ_{27} predicts $A_{11}=A_{22}=0$ \rightarrow 2 degenerate LSPs

Leptogenesis in the E₆SSM

SFK, Luo, Miller, Nevzorov

Three families of Higgs

Four families of Leptons

Three families of Leptoquarks

- ullet L₄ is vector like $M_4 L_4 \overline{L}_4$ M₄ \sim few TeV for GUT <u>unification</u>
- L₄, H^u_{1,2},D_k contribute to leptogenesis but not neutrino mass
- Can get very large asymmetries, hence constraint M₁>10⁸ GeV from leptogenesis is relaxed
- e.g. leptogenesis in E₆SSM allows e.g. M₁= 100 TeV
- → no gravitino problem

Conclusion

- **E**₆SSM well motivated by FT and μ problems
- Predicts matter in three 27 families at TeV scale + Z'
- Unification is preserved
- Flavour problems solved by non-Abelian family symmetry → model resembles cE₆SSM
- cE₆SSM predicts rich phenomenology at LHC
 e.g. 2 degenerate D-fermions, Z', light gauginos
- Two degenerate LSPs from inert Higgsinos/singlinos provide novel WIMP candidates
- Leptogenesis significantly enhanced by extra states such as Higgs, L' leptons and D leptoquarks which allows light right-handed neutrinos e.g. 100 TeV

Scenario 1: Effect of extra leptons L₄ alone (extra Higgs and leptoquark couplings set to zero)

Both plots are in plane of H₃L₄N_{1,2} Yukawa couplings

Scenario 2: Effect of extra Higgs H^u₂ alone (extra lepton and leptoquark couplings set to zero)

Both plots are in plane of H^u₂L₃N_{1,2} Yukawa couplings

Scenario 3: Effect of extra leptoquarks D_k alone (extra Higgs and lepton couplings set to zero)

Both plots are in plane of D₃d₃N_{1,2} Yukawa couplings