Theory and phenomenology of the Lee-Wick Standard Model

Terrance Figy

Institute for Particle Physics Phenomenology Durham University

CERN THEORY INSTITUTE: SM and BSM physics at the LHC 17 August, 2009

1 Lee-Wick Standard Model

- Lee-Wick Standard Model
- 2 Higgs boson sector of the LWSM

- Lee-Wick Standard Model
- 2 Higgs boson sector of the LWSM
- 3 Higgs boson pair production

- Lee-Wick Standard Model
- 2 Higgs boson sector of the LWSM
- Higgs boson pair production
- 4 Conclusions

Lee Wick Standard Model

- Lee and Wick made the assumption that the regulator employed in the framework of Pauli-Villars regularization indeed is a physical degree of freedom.¹
- GOW proposed a minimal extension of the SM which is free from quadratic divergences.
- The GOW model (aka LWSM) is a higher derivative theory and as such contains propagators with wrong sign residues about the new poles. Lee and Wick, and Cutkosky et al. provided a prescription for handling this issue.

²B. Grinstein, D. O'Connell and M. B. Wise, Phys. Rev. D **77**, 025012 (2008) [arXiv:0704.1845 [hep-ph]]

¹T. D. Lee and G. C. Wick, Nucl. Phys. B **9**, 209 (1969); Phys. Rev. D **2**, 1033 (1970)

Higgs boson sector

The higher derivative Lagrangian for the Higgs doublet \hat{H} is given by

$$\mathcal{L}_{hd} = (\hat{D}_{\mu}\hat{H})^{\dagger}(\hat{D}^{\mu}\hat{H}) - \frac{1}{M_{H}^{2}}(\hat{D}_{\mu}\hat{D}^{\mu}H)^{\dagger}(\hat{D}_{\nu}\hat{D}^{\nu}H) - V(\hat{H}), \qquad (1)$$

with covariant derivative

$$\hat{D}_{\mu} = \partial_{\mu} + ig_2 \hat{W}_{\mu}^{a} + ig_1 \hat{B}_{\mu} Y, \qquad (2)$$

and potential

$$V(\hat{H}) = \frac{\lambda}{4} \left(\hat{H}^{\dagger} \hat{H} - \frac{v^2}{2} \right)^2 . \tag{3}$$

Higgs boson sector

In the unitary gauge,

$$H = \begin{pmatrix} 0 \\ \frac{v+h}{\sqrt{2}} \end{pmatrix}, \qquad \tilde{H} = \begin{pmatrix} \tilde{h}^+ \\ \frac{\tilde{h}+i\tilde{P}}{\sqrt{2}} \end{pmatrix}$$
 (4)

For this choice, the mass Lagrangian of the Higgs scalar, h, its partner, \tilde{h} , the charged LW–Higgs, \tilde{h}^{\pm} , and the pseudo–scalar LW–Higgs, \tilde{P} is given by

$$\mathcal{L}_{mass} = -\frac{\lambda}{4} v^2 (h - \tilde{h})^2 + \frac{M_H^2}{2} (\tilde{h}\tilde{h} + \tilde{P}\tilde{P} + 2\tilde{h}^+\tilde{h}^-). \tag{5}$$

Yukawa Interactions

In the higher derivative formalism, the quark Yukawas are

$$\mathcal{L}_{Y} = g_{u}^{ij} \bar{u}_{R}^{i} \hat{H} \epsilon \hat{Q}_{L}^{j} - g_{d}^{ij} \bar{d}_{R}^{i} \hat{H}^{\dagger} \hat{Q}_{L}^{j} + H.c.$$
 (6)

where repeated flavour indices are summed.

Mass eigenstates

There is a mixing between the Higgs scalar and its LW-partner. The mass matrix is diagonalized by a symplectic rotation:

$$\begin{pmatrix} h \\ \tilde{h} \end{pmatrix} = \begin{pmatrix} \cosh \phi_h & \sinh \phi_h \\ \sinh \phi_h & \cosh \phi_h \end{pmatrix} \begin{pmatrix} h_{phys} \\ \tilde{h}_{phys} \end{pmatrix} .$$
(7)

The symplectic mixing angle ϕ_h and the physical masses are

$$\tanh \phi_h = \frac{-\lambda v^2 / M_H^2}{1 - \lambda v^2 / M_H^2},\tag{8}$$

and

Mass eigenstates

$$m_{h,phys}^{2} = \frac{1}{2} \left(M_{H}^{2} - \sqrt{M_{H}^{4} - 2v^{2}\lambda M_{H}^{2}} \right) , \qquad (9)$$

$$m_{\tilde{h},phys}^{2} = \frac{1}{2} \left(M_{H}^{2} + \sqrt{M_{H}^{4} - 2v^{2}\lambda M_{H}^{2}} \right) .$$

The quartic coupling can be computed from the physical Higgs masses

$$\lambda v^2 = \frac{2m_{h,phys}^2 m_{\tilde{h},phys}^2}{m_{h,phys}^2 + m_{\tilde{h},phys}^2}.$$
 (10)

Yukawa interactions

The neutral Higgs-top interaction is given by

$$\mathcal{L} = -\frac{1}{\nu}(h - \tilde{h})\overline{\Psi_R^t}g_t\Psi_L^t + H.c., \qquad (11)$$

with

$$\Psi_L^{t\top} = (T_L, \tilde{T}_L, \tilde{t}_L'), \qquad \Psi_R^{t\top} = (t_F, \tilde{t}_R \tilde{T}_R'). \tag{12}$$

 T_L is a component of the third generation of the SM doublet Q_L

$$Q_{L3} = \begin{pmatrix} T_L \\ B_L \end{pmatrix} . \tag{13}$$

Higgs boson pair production

Figure: (a) Triangle graphs for $f = (t, \tilde{t}, \tilde{T}, b, \tilde{b}, \tilde{B})$ and (b) box graphs for $f, f' = (t, \tilde{t}, \tilde{T}, b, \tilde{b}, \tilde{B})$.

$pp ightarrow H_1 H_1$ for $\sqrt{s} = 14$ TeV

$pp ightarrow H_1 H_1$ for $\sqrt{s} = 10$ TeV

$\overrightarrow{pp} ightarrow H_1H_1 ext{ for } \sqrt{s} = 7 ext{ TeV}$

Conclusions

- The LWSM is a minimal extension of the SM which is free of quadratic divergences.
- A consequence is the production and decay of LW-Higgs bosons.
- In the resonant region $M_{H_2} \geq 2M_{H_1}$ the inclusive cross section reaches ≈ 5 pb for $\sqrt{s}=14$ TeV and ≈ 2 pb for $\sqrt{s}=10$ TeV

