MSTW update

James Stirling

(with Alan Martin, Robert Thorne, Graeme Watt)

Outline

Published

- MSTW 2008 LO/NLO/NNLO summary
- variable α_s fits summary

Work in progress

- variable m_c, m_b fits
- $N_{f(max)}$ = 4 GM-VFNS pdfs
- 'QCD+QED' pdfs

MSTW 2008 (arXiv:0901.0002)

MSTW 2008 NLO PDFs (68% C.L.)

new data

- $-\delta f_i$ from new dynamic tolerance method: 68%cl (1 σ) and 90%cl (cf. MRST) sets available
- new definition of α_S (no more Λ_{OCD})
- new GM-VFNS for c, b (see Martin et al., arXiv:0706.0459)
- new fitting codes: FEWZ, VRAP, fastNLO
- new grids: denser, broader coverage
- slightly extended parametrisation at Q_0^2 :34-4=30 free parameters including α_S

code, text and figures available at:
http://projects.hepforge.org/mstwpdf/

data sets used in MSTW2008 fit

Data set	$N_{ m pts.}$
H1 MB 99 e ⁺ p NC	8
H1 MB 97 e ⁺ p NC	64
H1 low Q^2 96–97 e^+p NC	80
H1 high Q^2 98–99 e^-p NC	126
H1 high Q^2 99–00 e^+p NC	147
ZEUS SVX 95 e^+p NC	30
ZEUS 96–97 e^+p NC	144
ZEUS 98-99 e-p NC	92
ZEUS 99–00 e^+p NC	90
H1 99–00 e ⁺ p CC	28
ZEUS 99–00 e^+p CC	30
$H1/ZEUS\ e^{\pm}p\ F_2^{\mathrm{charm}}$	83
$H1 99-00 e^+p$ incl. jets	24
ZEUS 96–97 e^+p incl. jets	30
ZEUS 98–00 $e^{\pm}p$ incl. jets	30
DØ II $par{p}$ incl. jets	110
CDF II $p\bar{p}$ incl. jets	76
CDF II $W o l u$ asym.	22
DØ II $W o l u$ asym.	10
DØ II Z rap.	28
CDF II Z rap.	29

Data set	$N_{ m pts.}$
BCDMS $\mu p F_2$	163
BCDMS $\mu d F_2$	151
NMC $\mu p F_2$	123
NMC $\mu d F_2$	123
NMC $\mu n/\mu p$	148
E665 $\mu p F_2$	53
E665 μd F_2	53
SLAC <i>ep F</i> ₂	37
SLAC <i>ed</i> F_2	38
$NMC/BCDMS/SLAC F_L$	31
E866/NuSea <i>pp</i> DY	184
E866/NuSea pd/pp DY	15
NuTeV $\nu N F_2$	53
CHORUS $\nu N F_2$	42
NuTeV $\nu N \times F_3$	45
CHORUS $\nu N \times F_3$	33
CCFR $\nu N o \mu \mu X$	86
NuTeV $ u$ N $ ightarrow \mu \mu X$	84
All data sets	2743
CCFR $\nu N \rightarrow \mu \mu X$ NuTeV $\nu N \rightarrow \mu \mu X$	86 84

[•] Red = New w.r.t. MRST 2006 fit.

X

X

X

a note on α_{S}

world average value (PDG 2008):

$$\alpha_S^{\overline{MS},NNLO}(M_Z^2) = 0.1176 \pm 0.002$$

MSTW global fit value (minimum χ²):

$$\alpha_S^{\overline{MS},NNLO}(M_Z^2) = 0.1171$$

• the pdf error sets are generated with $\alpha_{\rm S}$ fixed at its 'best fit' value, therefore variation of (e.g. jets, top, etc at LHC) cross sections with $\alpha_{\rm S}$ is not explicitly included in the 'pdf error'

Note:
$$\alpha_S^{\overline{MS},NLO}(M_Z^2) = 0.1202$$

MSTW variable- α_{S} sets (arXiv:0905.3531)

allow α_S to vary in global fit

$$\alpha_S^{\overline{MS},NNLO}(M_Z^2) = 0.1171^{+0.0014}_{-0.0014}$$

- for fixed $\alpha_S \pm \delta \alpha_S$, produce sets with 'pdf errors', as before
- note gluon α_S anticorrelation at small x and quark – α_S anticorrelation at large x
- use resulting sets to quantify combined 'pdf + α_S' error on observables

Higgs ($M_H = 120 \text{ GeV}$) with MSTW 2008 NNLO PDFs

Higgs cross sections with MSTW 2008 NNLO PDFs

Higgs cross sections with MSTW 2008 NNLO PDFs

Note: $\delta \sigma_{th}$ still dominated by scale variation uncertainty

charm and bottom structure functions

- MSTW 2008 uses *fixed* values of m_c = 1.4 GeV and m_b = 4.75 GeV in a GM-VFNS
- can study the sensitivity of the fit to these values

dependence on m_c at NLO in 2008 fits (preliminary)

m_c (GeV)	χ^2_{global}	$\chi^2_{F_2^c}$	$\alpha_s(M_Z^2)$
	2699 pts	83 pts	
1.1	2730	264	0.1181
1.2	2626	188	0.1187
1.3	2563	134	0.1194
1.4	2543	107	0.1202
1.5	2545	97	0.1208
1.6	2574	104	0.1214
1.7	2627	129	0.1221

- correlation between m_c and α_S
- for low m_c overshoot low Q² medium x data badly
- preferred value (1.4 GeV) towards lower end of pole mass determination
- (asymmetric) uncertainty from global fit of order ± 0.15 GeV
- in contrast, only weak sensitivity to m_b

max. 4 flavour GM-VFNS pdfs

- MSTW 2008 sets have 5 quark flavours (u,d,s,c,b) asymptotically
- can generate 4 flavour (u,d,s,c) versions by
 - starting with same distributions at Q₀²
 - switching off $g \rightarrow bb$ etc. splittings
 - using a 4-flavour $\alpha_{\rm S}$ at high Q²

(GeV)

our previous FFNS sets: MRST2004

(LO, NLO) hep-ph/0603143

1.10

- this gives
 - $-b_4 = 0$
 - $-g_4 > g_5$
 - $-q_4 \approx q_5$
- useful for study of hadroproduction of heavy objects (X = Z, H, ...) that couple to b quarks

comparison of 4, 5 flavour pdfs

Z production at 14 TeV LHC

Note: 3% of $\sigma_{tot}(Z)$ comes from initial state b quarks (mainly bb $\rightarrow Z$)

QED effects in pdfs

QED corrections to DIS include:

 \Rightarrow mass singularity when $\gamma \parallel q$

$$\frac{\alpha}{2\pi} \langle e_q^2 \rangle \ln \left(\frac{Q^2}{m_q^2} \right) \simeq 0.01$$

for Q=100 GeV, $m_q=10$ MeV, $\langle e_q^2 \rangle = 5/18$.

De Rujula, Petronzio, Savoy-Navarro 1979 Krifganz, Perlt 1988 Bluemlein 1990 Spiesberger 1994 Roth, Weinzierl 2004

included in standard radiative correction packages (HECTOR, HERACLES)

QED-improved DGLAP equations

at leading order in α and α_s

$$\begin{array}{lll} \frac{\partial q_i(x,\mu^2)}{\partial \log \mu^2} & = & \frac{\alpha_S}{2\pi} \int_x^1 \frac{dy}{y} \Big\{ P_{qq}(y) \; q_i(\frac{x}{y},\mu^2) + P_{qg}(y,\alpha_S) \; g(\frac{x}{y},\mu^2) \Big\} \\ & + & \frac{\alpha}{2\pi} \int_x^1 \frac{dy}{y} \Big\{ \tilde{P}_{qq}(y) \; e_i^2 q_i(\frac{x}{y},\mu^2) + P_{q\gamma}(y) \; e_i^2 \gamma(\frac{x}{y},\mu^2) \Big\} \\ & \frac{\partial g(x,\mu^2)}{\partial \log \mu^2} \; = & \frac{\alpha_S}{2\pi} \int_x^1 \frac{dy}{y} \Big\{ P_{gq}(y) \; \sum_j q_j(\frac{x}{y},\mu^2) & \text{where} \\ & + & P_{gg}(y) \; g(\frac{x}{y},\mu^2) \Big\} \\ & \frac{\partial \gamma(x,\mu^2)}{\partial \log \mu^2} \; = & \frac{\alpha}{2\pi} \int_x^1 \frac{dy}{y} \Big\{ P_{\gamma q}(y) \; \sum_j e_j^2 \; q_j(\frac{x}{y},\mu^2) & P_{\gamma q} = C_F^{-1} P_{qq}, \\ & P_{q\gamma} = T_R^{-1} P_{qg}, \quad P_{\gamma \gamma} = -\frac{2}{3} \; \sum_i e_i^2 \; \delta(1-x) \\ & + & P_{\gamma \gamma}(y) \; \gamma(\frac{x}{y},\mu^2) \Big\} \end{array}$$

where

$$\tilde{P}_{qq} = C_F^{-1} P_{qq}, \qquad P_{\gamma q} = C_F^{-1} P_{gq},$$

$$P_{q\gamma} = T_R^{-1} P_{qg}, \qquad P_{\gamma \gamma} = -\frac{2}{3} \sum_i e_i^2 \, \delta(1 - x)$$

• momentum conservation: $\int_0^1 dx \ x \ \Big\{ \sum_i q_i(x,\mu^2) + g(x,\mu^2) + \gamma(x,\mu^2) \Big\} = 1$

- effect on quark distributions negligible at small x where gluon contribution dominates DGLAP evolution
- at large x, effect only becomes noticeable (order percent) at very large Q^2 , where it is equivalent to a shift in α_S of $\Delta \alpha_S \approx 0.0003$
- dynamic generation of photon parton distribution
- isospin violation: $u^p(x) \neq d^n(x) \ (\rightarrow \sin^2\theta_W \ a \ la \ NuTeV)$
- MRST2004: first (and only?) consistent global pdf fit with QED corrections included [hep-ph/0411040]
- we will produce MSTW2008 version soon

 relevant for electroweak correction calculations for processes at Tevatron & LHC, e.g. W, Z, WH, ... (see e.g. U. Baur et al, PRD 59 (2003) 013002)

Vicini et al, PDF4LHC, Sept 2008

- Problem: definition of $\gamma(x,Q_0^2)$?
- MRST 2004 used:

$$\gamma(x, Q_0^2) = \frac{\alpha}{2\pi} \sum_{q=u,d} e_q^2 P_{\gamma q}(x) *q_0(x) \log(Q_0^2/m_q^2)$$

... with $m_q \sim 10 \text{ MeV}$ (or $\sim 300 \text{ MeV}$ or ...?!)

measurement of $\gamma_p(x,Q^2)$ at HERA?

- isolated hard photon production at HERA gets contribution from $\gamma(x,Q_0^2)$
- early ZEUS data used in MRST 2004 as cross check on photon pdf

GGP = Gehrmann-De Ridder, Gehrmann & Poulsen [Phys. Rev. Lett. 96 (132002) 2006]

QQ = hard photon emission off a DIS struck quark MRST = e $\gamma \rightarrow$ e γ contribution using MRST 2004 QED pdfs

See presentation by Matthew Forrest (ZEUS) at DIS09: "Promptphoton production in DIS", and ZEUS publication to appear

extra slides

data sets used in fit

Data set	$N_{ m pts.}$
H1 MB 99 e ⁺ p NC	8
H1 MB 97 e ⁺ p NC	64
H1 low Q^2 96–97 $e^+ p$ NC	80
H1 high Q^2 98–99 $e^- ho$ NC	126
H1 high Q^2 99–00 e^+p NC	147
ZEUS SVX 95 $e^+ p$ NC	30
ZEUS 96–97 e^+p NC	144
ZEUS 98-99 e ⁻ p NC	92
ZEUS 99–00 e^+p NC	90
H1 99–00 e ⁺ p CC	28
ZEUS 99–00 e^+p CC	30
$H1/ZEUS e^{\pm}p F_2^{charm}$	83
H1 99–00 e^+p incl. jets	24
ZEUS 96–97 e^+p incl. jets	30
ZEUS 98–00 $e^\pm p$ incl. jets	30
DØ II pp̄ incl. jets	110
CDF II $par{p}$ incl. jets	76
CDF II $W o l u$ asym.	22
DØ II $W \rightarrow l \nu$ asym.	10
DØ II Z rap.	28
CDF II Z rap.	29

$V_{ m pts.}$
163
151
123
123
148
53
53
37
38
31
184
15
53
42
45
33
86
84
2743

• Red = New w.r.t. MRST 2006 fit.

MSTW input parametrisation

At input scale
$$Q_0^2 = 1 \text{ GeV}^2$$
:
$$xu_V = A_u \, x^{\eta_1} (1-x)^{\eta_2} (1+\epsilon_u \, \sqrt{x} + \gamma_u \, x)$$

$$xd_V = A_d \, x^{\eta_3} (1-x)^{\eta_4} (1+\epsilon_d \, \sqrt{x} + \gamma_d \, x)$$

$$xS = A_S \, x^{\delta_S} (1-x)^{\eta_S} (1+\epsilon_S \, \sqrt{x} + \gamma_S \, x)$$

$$x\bar{d} - x\bar{u} = A_\Delta \, x^{\eta_\Delta} (1-x)^{\eta_S+2} (1+\gamma_\Delta \, x + \delta_\Delta \, x^2)$$

$$xg = A_g \, x^{\delta_g} (1-x)^{\eta_g} (1+\epsilon_g \, \sqrt{x} + \gamma_g \, x) + A_{g'} \, x^{\delta_{g'}} (1-x)^{\eta_{g'}}$$

$$xs + x\bar{s} = A_+ \, x^{\delta_S} \, (1-x)^{\eta_+} (1+\epsilon_S \, \sqrt{x} + \gamma_S \, x)$$

$$xs - x\bar{s} = A_- \, x^{\delta_-} (1-x)^{\eta_-} (1-x/x_0)$$

Note: 20 parameters allowed to go free for eigenvector PDF sets, *cf.* 15 for MRST sets

which data sets determine which partons?

Process	Subprocess	Partons	x range
$\ell^{\pm}\left\{p,n\right\} \to \ell^{\pm}X$	$\gamma^* q \to q$	$q, ar{q}, g$	$x \gtrsim 0.01$
$\ell^{\pm} n/p \to \ell^{\pm} X$	$\gamma^* d/u o d/u$	d/u	$x \gtrsim 0.01$
$pp \to \mu^+ \mu^- X$	$u ar{u}, d ar{d} ightarrow \gamma^*$	$ar{q}$	$0.015 \lesssim x \lesssim 0.35$
$pn/pp \rightarrow \mu^{+}\mu^{-} X$	$(u\bar{d})/(u\bar{u}) \to \gamma^*$	$ar{d}/ar{u}$	$0.015 \lesssim x \lesssim 0.35$
$\nu(\bar{\nu}) N \to \mu^-(\mu^+) X$	$W^*q o q'$	$q,ar{q}$	$0.01 \lesssim x \lesssim 0.5$
$\nu N \to \mu^- \mu^+ X$	$W^*s \to c$	s	$0.01 \lesssim x \lesssim 0.2$
$\bar{\nu} N \to \mu^+ \mu^- X$	$W^*\bar{s} \to \bar{c}$	$ar{s}$	$0.01 \lesssim x \lesssim 0.2$
$e^{\pm} p \to e^{\pm} X$	$\gamma^* q \to q$	$g,q,ar{q}$	$0.0001 \lesssim x \lesssim 0.1$
$e^+ p \to \bar{\nu} X$	$W^+\left\{d,s\right\} \to \left\{u,c\right\}$	d, s	$x \gtrsim 0.01$
$e^{\pm}p \to e^{\pm} c\bar{c} X$	$\gamma^*c \to c, \ \gamma^*g \to c\bar{c}$	c, g	$0.0001 \lesssim x \lesssim 0.01$
$e^{\pm}p \to \mathrm{jet} + X$	$\gamma^* g \to q \bar{q}$	g	$0.01 \lesssim x \lesssim 0.1$
$p\bar{p} \to \mathrm{jet} + X$	gg,qg,qq ightarrow 2j	g,q	$0.01 \lesssim x \lesssim 0.5$
$p\bar{p} \to (W^{\pm} \to \ell^{\pm} \nu) X$	$ud \to W, \bar{u}\bar{d} \to W$	$u,d,ar{u},ar{d}$	$x \gtrsim 0.05$
$p\bar{p} \to (Z \to \ell^+\ell^-) X$	$uu, dd \rightarrow Z$	d	$x \gtrsim 0.05$

values of χ^2/N_{pts} for the data sets included in the MSTW2008 global fits

Data set	LO	NLO	NNLO
BCDMS $\mu p F_2$ [32]	165 / 153	182 / 163	170 / 163
BCDMS $\mu d F_2$ [102]	162 / 142	190 / 151	188 / 151
NMC $\mu p F_2$ [33]	137 / 115	121 / 123	115 / 123
NMC $\mu d F_2$ [33]	120 / 115	102 / 123	93 / 123
NMC $\mu n / \mu p \ [103]$	131 / 137	130 / 148	135 / 148
E665 $\mu p F_2$ [104]	59 / 53	57 / 53	63 / 53
E665 $\mu d F_2$ [104]	49 / 53	53 / 53	63 / 53
SLAC $ep F_2$ [105, 106]	24 / 18	30 / 37	31 / 37
SLAC $ed\ F_2\ [105,\ 106]$	12 / 18	30 / 38	26 / 38
NMC/BCDMS/SLAC F_L [32–34]	28 / 24	38 / 31	32 / 31
E866/NuSea pp DY [107]	239 / 184	228 / 184	237 / 184
E866/NuSea pd/pp DY [108]	14 / 15	14 / 15	14 / 15
NuTeV νN F_2 [37]	49 / 49	49 / 53	46 / 53
CHORUS $\nu N F_2$ [38]	21 / 37	26 / 42	29 / 42
NuTeV $\nu N \ xF_3 \ [37]$	62 / 45	40 / 45	34 / 45
CHORUS $\nu N \ xF_3$ [38]	44 / 33	31 / 33	26 / 33
CCFR $\nu N \rightarrow \mu \mu X$ [39]	63 / 86	66 / 86	69 / 86
NuTeV $\nu N \rightarrow \mu \mu X$ [39]	44 / 40	39 / 40	45 / 40
H1 MB 99 e ⁺ p NC [31]	9 / 8	9 / 8	7 / 8
H1 MB 97 e ⁺ p NC [109]	46 / 64	42 / 64	51 / 64
H1 low Q^2 96–97 e^+p NC [109]	54 / 80	44 / 80	45 / 80
H1 high Q^2 98–99 e^-p NC [110]	134 / 126	122 / 126	124 / 126
H1 high Q^2 99–00 e^+p NC [35]	153 / 147	131 / 147	133 / 147
ZEUS SVX 95 e^+p NC [111]	35 / 30	35 / 30	35 / 30
ZEUS 96–97 e^+p NC [112]	118 / 144	86 / 144	86 / 144
ZEUS 98–99 e^-p NC [113]	61 / 92	54 / 92	54 / 92
ZEUS 99–00 e^+p NC [114]	75 / 90	63 / 90	65 / 90
H1 99–00 e^+p CC [35]	28 / 28	29 / 28	29 / 28
ZEUS 99–00 e^+p CC [36]	36 / 30	38 / 30	37 / 30
$H1/ZEUS$ ep F_2^{charm} [41–47]	110 / 83	107 / 83	95 / 83
H1 99-00 e ⁺ p incl. jets [<u>59</u>]	109 / 24	19 / 24	_
ZEUS 96–97 e^+p incl. jets [57]	88 / 30	30 / 30	_
ZEUS 98–00 $e^{\pm}p$ incl. jets [58]	102 / 30	17 / 30	
DØ II $p\bar{p}$ incl. jets [56]	193 / 110	114 / 110	123 / 110
CDF II $p\bar{p}$ incl. jets [54]	143 / 76	56 / 76	54 / 76
CDF II $W \rightarrow \ell \nu$ asym. [48]	50 / 22	29 / 22	30 / 22
DØ II $W \rightarrow \ell \nu$ asym. [49]	23 / 10	25 / 10	25 / 10
DØ II Z rap. [53]	25 / 28	19 / 28	17 / 28
CDF II Z rap. [52]	52 / 29	49 / 29	50 / 29
All data sets	3066 / 2598	2543 / 2699	2480 / 2615

MSTW2008(NLO) vs. CTEQ6.6

Note:

CTEQ error bands comparable with MSTW 90%cl set (different definition of tolerance)

CTEQ light quarks and gluons slightly larger at small x because of imposition of positivity on gluon at Q_0^2

Also:

Alekhin et al HERAPDF NNPDF

. . .

29

MSTW 2008 NNLO ($\alpha_{\rm S}$) PDF fit $\alpha_{\rm S}({\rm M_2^0}) = 0.1171^{+0.0014}_{-0.0014} (68\% {\rm C.L.})^{+0.0034}_{-0.0034} (90\% {\rm C.L.})$ 100 0.105 0.11 0.115 0.12 0.125 $\alpha_{\rm S}({\rm M_2^2})$

MSTW 2008 NNLO ($\alpha_{\rm g}$) PDF fit

pdf, α_{S} uncertainties in jet cross sections

Inclusive jet cross sections with MSTW 2008 NLO PDFs

inclusive jet production at Tevatron ($\eta^{jet} = 0$)

inclusive jet production at LHC ($\eta^{jet} = 0$)

MSTW 2008 NNLO ($\alpha_{\rm S}$) PDF fit

MSTW2008 vs MRST2006

MSTW2008 vs Alekhin2002

MSTW2008 vs NNPDF1.0

$R(W/Z) = \sigma(W)/\sigma(Z)$ @ Tevatron & LHC

W and Z total cross sections at the LHC

CDF 2007: $R = 10.84 \pm 0.15 \text{ (stat)} \pm 0.14 \text{ (sys)}$

scaling violations measured at HERA

pdf uncertainties

$$\Delta \chi_{\text{global}}^2 \equiv \chi_{\text{global}}^2 - \chi_{\text{min}}^2 = \sum_{i,j=1}^n H_{ij} (a_i - a_i^0) (a_j - a_j^0)$$

$$\vec{a} - \vec{a}^0 = \sum_{k=1,n} z_k \vec{e}_k \text{ where } (H^{-1}) \cdot \vec{e}_k = \lambda_k \vec{e}_k, \ \vec{e}_k \cdot \vec{e}_l = \lambda_k \delta_{kl}$$

then
$$\Delta \chi^2_{\text{global}} = \sum_{k=1,n} z_k^2 \le T^2$$
 ($T = \text{tolerance}$)

this defines a set of n 'error' pdfs, spanning the allowed variation in the parameters, as determined by T:

$$\vec{a}(S_k^{\pm}) = \vec{a}^0 \pm T\vec{e}_k$$

rather than using a fixed value of T (cf. MRST, CTEQ), we determine the 'dynamic' tolerance for each eigenvector from the condition that all data sets should be described within their 68% or 90% or ... confidence limit

