CKKW merging at NLO

Leif Lönnblad
(work done with Nils Lavesson)

Department of Theoretical Physics
Lund University

Theory Institute CERN 09.08.11

J. High Energy Phys. 12 (2008) 070.

Introduction

- Starting point is CKKW(-L)
- We want to add events generated with NLO ME's
- The corresponding terms must be subtracted from the standard CKKW events.

Standard CKKW(-L) merging

Start out with events generated according to (inclusive) tree-level ME's

$$
d \sigma_{+n}^{\text {tree }}=C_{n}\left(\Omega_{n}\right) \alpha_{\mathrm{s}}^{n}\left(\mu_{R}\right) d \Omega_{n}
$$

where $\Omega_{n}=\left(q_{1}, \ldots, q_{m} ; p_{1}, \ldots, p_{n}\right)$ is the phase space for an m-particle Born process with n extra jets ($0 \leq n \leq N$).
The divergencies are regularized by a jet-like phase space cut, $k_{\perp M S}$.

Here we will assume that the parton shower is ordered in ρ, which is the same variable as $k_{\perp M s}$.
In this way we don't have to worry about vetoed/trunkated showers. We can simply add a shower below $k_{\perp M S}$ (except for the highest jet multiplicity).
CKKW-L is designed to work with mixed ordering/merging scales, but the notation becomes cumbersome.
(If you're interested, we can return to that in the discussion)

The basic idea

- Above $k_{\perp M S}$, the phase space should be populated by jets/partons given by the tree-level ME.
- Below $k_{\perp M S}$, we have the parton shower
- For the highest multiplicity $(n=N)$, PS jets are allowed above $k_{\perp M S}$, as long as they are below the ME-jets.
- The ME states must be made exclusive by adding appropriate Sudakov Form factors.

First we do a mapping to the patron shower phase space

$$
\Omega_{n} \mapsto \Omega_{n}^{\mathrm{PS}}=\left(q_{1}, \ldots, q_{m} ; \rho_{1}, x_{1} \ldots, \rho_{n}, x_{n}\right)
$$

I.e. a shower history is constructed, with emissions $\left(\rho_{i}, x_{i}\right)$.

Then we reweight

$$
d \sigma_{+n}^{\mathrm{CKKW}}=C_{n}\left(\Omega_{n}\right) \alpha_{\mathrm{s}}^{n}\left(\mu_{R}\right) \prod_{i=1}^{n} \frac{\alpha_{\mathrm{s}}^{\mathrm{PS}}\left(\rho_{i}\right)}{\alpha_{\mathrm{s}}\left(\mu_{R}\right)} \prod_{i=0}^{n} \Delta_{S_{i}}\left(\rho_{i}, \rho_{i+1}\right) d \Omega_{n}
$$

with $\rho_{n+1}=k_{\perp M S}$ and ρ_{0} is the maximum scale for the shower if ${ }_{*}$ started from the reconstructed Born-state.
$\alpha_{\mathrm{s}}^{\mathrm{PS}}\left(\rho_{i}\right)$ is the coupling the shower would have used in the corresponding emissions.
$\Delta_{S_{i}}\left(\rho_{i}, \rho_{i+1}\right)$ is the no-emission probability in the shower from the reconstructed state S_{i} between the scales ρ_{i} and ρ_{i+1}. This is by definition the Sudakov form factor used in the shower.
If $n=N$ the last Sudakov, $\Delta_{S_{N}}\left(\rho_{N}, \rho_{N+1}\right)$, is omitted and the shower is added below ρ_{N}, rather than $k_{\perp M s}$.

CKKW vs. CKKW-L

- Sudakov form factors are calculated analytically in CKKW. In -L they are calculated by the shower itself (including all funny kinematic effects).
- CKKW only reconstructs scales with a jet algorithm. In -L a full parton shower history is reconstructed.
- CKKW has trouble when the PS ordering is not the same as the jet measure used for $k_{\perp M S}$.
- CKKW-L needs a PS with on-shell explicit intermediate states.

Adding one-loop ME's

Now we want to look at n-jet events generatet to one-loop order

$$
d \sigma_{+n}^{\text {loop }}=C_{n}\left(\Omega_{n}\right) \alpha_{\mathrm{s}}^{n}\left(\mu_{R}\right)\left[1+C_{n, 1}\left(\Omega_{n}\right) \alpha_{\mathrm{s}}\left(\mu_{R}\right)\right] d \Omega_{n}
$$

Where $C_{n, 1}$ is obtained from the virtual and real corrections integrated up to the merging scale $k_{\perp M S}$.
$\sigma_{+n}^{\text {loop }}$ should give the NLO-approximation to the exclusive cross section for n extra jets above $k_{\perp M S}$.
(physical quantity - no subtraction-scheme dependence)

- $\sigma_{+n}^{\text {CKKW }}$ gives exclusive n-jet states approximately correct (as far as the PS is correct) to all orders in α_{s}.
- $\sigma_{+n}^{\text {loop }}$ gives exclusive n -jet states exactly correct to the leading two orders in α_{s}.

In both cases we can add a shower below $k_{\perp M S}$.
The strategy will be to add events from both, but remove the LO and NLO terms from the CKKW.

We want to use $\sigma_{+n}^{\mathrm{CKKW}}$ with the first two orders in α_{s} subtracted. So we expand the CKKW weight (including a K-factor):

$$
K \prod_{i=1}^{n} \frac{\alpha_{\mathrm{s}}^{\mathrm{PS}}\left(\rho_{i}\right)}{\alpha_{\mathrm{s}}\left(\mu_{R}\right)} \prod_{i=0}^{n} \Delta_{S_{i}}\left(\rho_{i}, \rho_{i+1}\right)=1+\alpha_{\mathrm{s}}\left(\mu_{R}\right) B^{\mathrm{PS}}+\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\left(\mu_{R}\right)\right)
$$

So we reweight the tree-level events by a modified CKKW weight:

$$
\begin{aligned}
d \sigma_{+n}^{\mathrm{PS} \text { corr }} & =C_{n}\left(\Omega_{n}\right) \alpha_{\mathrm{s}}^{n}\left(\mu_{R}\right) d \Omega_{n} \\
& \times\left[K \prod_{i=1}^{n} \frac{\alpha_{\mathrm{s}}^{\mathrm{PS}}\left(\rho_{i}\right)}{\alpha_{\mathrm{s}}\left(\mu_{R}\right)} \prod_{i=0}^{n} \Delta_{S_{i}}\left(\rho_{i}, \rho_{i+1}\right)-1-\alpha_{\mathrm{s}}\left(\mu_{R}\right) \mathrm{BP}_{\mathrm{PS}}^{\mathrm{P}}\right]
\end{aligned}
$$

$$
K=1+k_{1} \alpha_{\mathrm{s}}\left(\mu_{R}\right)
$$

$$
\frac{\alpha_{\mathrm{s}}^{\mathrm{PS}}(\rho)}{\alpha_{\mathrm{s}}\left(\mu_{R}\right)}=1-\frac{\log \frac{b_{\rho}}{\mu_{R}}}{\alpha_{0}} \alpha_{\mathrm{s}}\left(\mu_{R}\right)+\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\left(\mu_{R}\right)\right)
$$

$$
\begin{aligned}
\Delta_{S_{i}}\left(\rho_{i}, \rho_{i+1}\right) & =\exp \left(-\int_{\rho_{i+1}}^{\rho_{i}} d \rho \alpha_{\mathrm{s}}(\rho) \Gamma_{s_{i}}(\rho)\right) \\
& =1-\alpha_{\mathrm{s}}\left(\mu_{R}\right) \int_{\rho_{i+1}}^{\rho_{i}} d \rho \Gamma_{s_{i}}(\rho)+\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\left(\mu_{R}\right)\right)
\end{aligned}
$$

- $\sigma_{+n}^{\text {loop }}+\sigma_{+n}^{\text {PScorr }}$ gives exclusive n -jet states exactly correct to the first two orders in α_{s} and approximately correct to all other orders in α_{s}.

All weights are positive as long as

- $k_{\perp M S}$ is large enough for the NLO ME to be positive
- $\mu_{R}<b \rho_{i}$

The net result is events generated so that all n-jet observables (above the merging scale and $n<N$) will be correct to NLO with a PS-simulated resummation. And N-jet observables will correct to LO+PSresum.

This works for $e^{+} e^{-}$:

(Note, this is without the extra α_{S}-scale, otherwise ARIADNE is almost identical to NLO.)

Outlook

- CKKW-L-like NLO+PS merging works.
- So far only for $\mathrm{e}^{+} \mathrm{e}^{-}$.
- Should be trivial to apply to standard CKKW as well.
- Works for high jet multiplicities (cf. MC@NLO and POWHEG).
- NNLO matching is (in principle) possible.
- Extending to pp collisions (eg. W+jets) should be possible, but not necessarily trivial.

We need to worry about factorization scheme dependencies. $\sigma_{+n}^{\text {loop }}$ contains PDFs which means that it is not just $\alpha_{\mathrm{s}}\left(\mu_{R}\right)^{n}$ and $\alpha_{\mathrm{s}}\left(\mu_{R}\right)^{n+1}$ terms, but a full resummation.

The CKKW-reweighting also changes.
The no-emission probabilities are no longer simple Sudakov form factors, but contain PDF ratios. Difficult to disentangle how these overlap with the PDFs in the NLO ME.

CKKW merging at NLO

Leif Lönnblad
(work done with Nils Lavesson)

Department of Theoretical Physics
Lund University

Theory Institute CERN 09.08.11

J. High Energy Phys. 12 (2008) 070.

The CKKW-L reweighting becomes

$$
K \prod_{i=1}^{n} \frac{\alpha_{\mathrm{s}}^{\mathrm{PS}}\left(\rho_{i}\right)}{\alpha_{\mathrm{s}}\left(\mu_{R}\right)} \prod_{i=0}^{n} \frac{f_{i}\left(x_{i}, \rho_{i}\right)}{f_{i}\left(x_{i}, \rho_{i+1}\right)} \Pi_{S_{i}}\left(x, \rho_{i}, \rho_{i+1}\right)
$$

(assuming $\mu_{F}=k_{\perp M S}=\rho_{n+1}$)

$$
\begin{aligned}
\Pi_{S_{i}}\left(x, \rho_{i}, \rho_{i+1}\right) & =\Delta_{S_{i}}\left(\rho_{i}, \rho_{i+1}\right) \\
& \times \exp \left(-\int_{\rho_{i}}^{\rho_{i+1}} \frac{d \rho}{\rho} \int \frac{d z}{z} \frac{\alpha_{\mathrm{s}}(\rho)}{2 \pi} \sum_{a} P_{a i}(z) \frac{f_{a}\left(\frac{x}{z}, \rho\right)}{f_{i}(x, \rho)}\right)
\end{aligned}
$$

From the pink bible we have

$$
\begin{aligned}
& \frac{f_{b}\left(x, t_{0}\right)}{f_{b}\left(x, t_{1}\right)} \exp \left(-\int_{t_{1}}^{t_{0}} d t \sum_{a} \int_{S(t)} \frac{d z}{z} \frac{f_{a}\left(\frac{x}{z}, t\right)}{f_{b}(x, t)} P_{a \rightarrow b c}(z)\right)= \\
& =\exp \left(-\int_{t_{1}}^{t_{0}} d t \frac{\alpha S_{S}(t)}{2 \pi} \sum_{d} \int_{S^{\prime}(t)} d z P_{b \rightarrow d e}(z)\right)
\end{aligned}
$$

(which is used by Frank in CKKW)

