

Kai-Feng Chen

National Taiwan University

The CMS Collaboration

SM and BSM physics at the LHC, August 21st, 2009

Motivation: the Grand Puzzle

The universe started from the "Big Bang"

Although, the known baryon-antibaryon asymmetry is already quite small (10⁻¹⁰).

Kobayashi-Maskawa phase only contributes ~10-20

Pair Annihilation \Rightarrow lots of photons (γ)

$$\frac{n(\overline{B})}{n(\gamma)} \simeq 0$$

Anti-inatter

$$\left(rac{n(B)}{n(y)} = (5.1^{+0.3}_{-0.2}) \times 10^{-10}$$
 (WMAP)

Matter

The CP violation in the Standard Model is far too small for accommodating the "matter-dominated" Universe!

"Something" is definitely necessary to enlarge the asymmetry by $O(10^{10})$

Ingredients in the SM

- **KEY1**: At least **THREE** generations!
- **KEY2**: Non-trivial *CP* phase,
 Non-trivial unitarity triangle.

- **KEY3**: Non-degenerate like-charge quarks.
- Jarlskog Invariant: prop. to <u>quark masses</u> and <u>triangle area A</u>.

$$J = (m_t^2 - m_u^2)(m_t^2 - m_c^2)(m_c^2 - m_u^2)(m_b^2 - m_d^2)(m_b^2 - m_s^2)(m_s^2 - m_d^2)A$$

 $J/T^{12} \sim 10^{-20}$

How could we boost J by $O(10^{10})$?

Adding one more generation of heavy quark is one of the low-cost solutions!

A Low-Cost Solution

See W.S.Hou arXiv:0803.1234 for details.

If we simply shift the invariant by one generation:

$$\begin{bmatrix}
u & c & t \\
d & s & b
\end{bmatrix}
t'$$

$$u \begin{bmatrix} c & t & t' \\
s & b & b'
\end{bmatrix}$$

$$J' \sim (m_{t'}^2 - m_c^2)(m_{t'}^2 - m_t^2)(m_t^2 - m_c^2)(m_{b'}^2 - m_s^2)(m_{b'}^2 - m_b^2)(m_b^2 - m_s^2)A'$$

$$\frac{J'}{J} \simeq \frac{m_{t'}^2}{m_c^2} \left(\frac{m_{t'}^2}{m_t^2} - 1 \right) \frac{m_{b'}^4}{m_b^2 m_s^2} \frac{A'}{A}$$

The area contributes only a factor of ~30.

For $m(b',t') = 300 \sim 600 \text{ GeV}/c^2$

already gives us a huge boost of O(10¹³~10¹⁵) on J!

- Also resolves some known NP hints (e.g. B_s mixing phase).
- A strong motivation for a carpet search at LHC!

Today we are focusing on the **bottom-like 4th generation quark, b**'.

(t' analysis is also working in progress.)

The Decay Pattern of b'

Rich Signatures

- Larger x-sec.
- For sizable $|V_{cb'}|$:

 $b' \rightarrow cW \gg f^{(*)}W^{(*)}$

- Suppressed $|V_{cb'}|$: $b' \rightarrow cW \ll f^{(*)}W^{(*)}$
- FCNC: b' → bZ, bH

b' → tW dominance

- Lower x-sec.
- Large mass coverage.

Tevatron limits:

 $M(b'\rightarrow tW) > 325 \text{ GeV}/c^2$.

 $M(t' \to qW) > 311 \text{ GeV}/c^2$.

 $M(b'\rightarrow bZ) > 268 \text{ GeV}/c^2$

LHC provides the chance for direct searches, from <u>light</u> to <u>heavy!</u>

(assuming 100% b' \rightarrow bZ, so it's not really firm).

b'/t' Searching Scenarios at CMS

The searching scenarios: based on the combination of decay modes and signature.

Scenario #1
Low mass, decaying into cWcW

How to disentangle b'
form top would be the

critical issue.

Scenario #3
High mass, decaying into qWqW
Include possible t' and
the case of b' which is not
decaying into tW.

Scenario #2
Low mass, decaying into bZcW
Clear signature, fight for low
bZ branching fraction, seek
for a early discovery.

Scenario #4
High mass, decaying into tWtW
Composite signature, seek for a method to observe the signal with early data.

#1 and #3 are working in progress, #2 and #4 will be shown today.

The CMS Detector

Acceptance: Calorimetry $|\eta| < 5.0$, Tracking $|\eta| < 2.4$

The Analysis: Light b'b'→bZcW

Looking for $b'b' \rightarrow cWbZ \rightarrow 2$ jets + 3 leptons + MET signature

function of $b \rightarrow bZ$.

But more data is required for the low branching

The Analysis: Light b'b'→bZcW

- Data set assumption:
 1 fb⁻¹ at 10 TeV recorded by the CMS detector.
- **Trigger:** single electron trigger or single muon trigger.
- Lepton selections:
 - → Electrons: isolated from tracks and EM/Hadron clusters, cut-based ID, p_T > 20 GeV/c.
 - \rightarrow Muons: isolated from tracks and EM/Had. clusters, $p_T > 20$ GeV.
- **Z selection:** 80 < $M(\ell\ell)$ < 100 GeV/ c^2 , and no other candidate between 60~120 GeV/ c^2 .
- **W selection:** $30 < M_T = \sqrt{2 MET E_T^l (1 \cos \Delta \phi)} < 120 \text{ GeV}/c^2$, daughter charged lepton $p_T > 30 \text{ GeV}$.
- **Jet selections**: Iterative cone algorithm of 0.5 radius
 - \rightarrow At least 2 jets with $p_T > 30 \text{ GeV/}c$.

The Analysis: Light b'b'→bZcW

Expected Yields @ 10 TeV 1/fb

b' Signal

Assuming 10% b'→bZ x 90% b'→cW

Process	Yield	S/N
<i>b'b'</i> , <i>M</i> =200 GeV	29.9	2.2
<i>b'b'</i> , <i>M</i> =225 GeV	16.7	1.2
<i>b'b'</i> , <i>M</i> =250 GeV	11.4	0.8

- The signal is clear if M(b')~200 GeV or with a larger bZ branching fraction.
- Non-trivial background from <u>Z+jets</u> and <u>WZ</u> events.

Background Sources

Process	Yield
tt+jets	1.3
Z+jets	4.8
W+jets	<1.1
W/Z+QQ (Q=b,c)	0.9
WW	0.1
WZ	2.3
WZ+2j VBF	4.1
ZZ	0.3
Sum	13.8

QCD background expectation is also small (<1.3 events).

Resulting Figures (200 GeV b)

Histograms are normalized to 1/fb luminosity

Signal observable(s): $HT = \Sigma p_T(jets) + \Sigma p_T(leps) + MET$ and M(bZ)

ightharpoonup Pairing by making balanced bZ and cW in ϕ direction

Background, mainly from Z+jets and WZ

Resulting Figures (Various b' masses)

Background, independent of b' assumption

Z+jets & WZ events are normalized using control regions with loser lepton isolation requirements.

Discovery Potential & Exclusion Limit

M(b') (GeV)	200	225	250
Signal Yield	29.9	16.7	11.4
Background Yield		13.8	
Significance	3.8σ	1.9σ	1.1σ

Assuming: $10\% b' \rightarrow bZ \times 90\% b' \rightarrow cW$ 1 fb⁻¹ data at 10 TeV

The Analysis: Heavy b'→tW

Full decay chain: $b'b' \rightarrow tW tW \rightarrow bbW^+W^-W^+W^-$ (4 W-bosons!)

Same-sign dileptons and Trileptons

for the first probing of the signal

PAGE. 14

The Analysis: Heavy b'→tW

- Data set assumption:
 - 200 pb-1 at 10 TeV recorded by the CMS detector.
- **Trigger:** single electron trigger or single muon trigger.
- Lepton selections:
 - \rightarrow Electrons: cut-based ID, isolated from tracks, $p_T > 25$ GeV/c.
 - \rightarrow Muons: isolated from tracks and EM clusters, $p_T > 20 \text{ GeV}/c$.
 - Requiring exact **2L with the same charge**, or **3L** in the final state.
- **Jet selections:** Iterative cone algorithm of 0.5 radius
 - → Same-sign 2L: at least 4 or more jets p_T > 35 GeV/c.
 - \rightarrow 3L: at least 2 or more jets $p_T > 35 \text{ GeV}/c$.
- Other requirements:
 - \rightarrow At least one jet > 85 GeV/c, at least one lepton > 35 GeV/c.
 - \rightarrow A Z-boson veto: $|M(\ell\ell)-M_Z| > 10 \text{ GeV}/c^2$.
 - \rightarrow Objects isolation: $\Delta R(\ell,\ell) > 0.3 \& \Delta R(\ell,\text{jet}) > 0.3$

The Analysis: Heavy b'→tW

Expected Yields @ 10 TeV 200/pb

b' Signal Assuming 100% b'→tW

M(b') (GeV)	300	400	500
N(3L)	8.56	2.75	0.79
N(same-sign 2L)	25.52	7.84	2.72
Sum	34.08	10.58	3.52
S/N	32	9.8	3.2

- The signal is very significant with high S/N, up to 300~400 GeV/c² b'.
- Background is dominated by the tt+jets events.

Background Sources

Process	tt+nj	ttZ+j	ttW+j	ttWW	Z/W+nj	dibosons	All
N(3L)	0.08	0.02	0.03	0.004	0.08	< 0.08	0.22
N(same-sign 2L)	0.56	0.10	0.17	0.007	<0.11	0.04	0.87
Sum	0.64	0.12	0.20	0.010	0.08	0.04	1.08

QCD events are negligible (<0.11 events)

Resulting Figures (300 GeV b)

Signal observable: $HT = \sum p_T(jets) + \sum p_T(leps) + MET$ (carries mass information!)

Histograms are normalized to 200/pb luminosity

Background, mainly tt+jets

Background Estimation with Data

Background is normalized by the control sample:
Opposite sign 2L w/ the same jet requirement

(It's totally dominated by ttbar – as our wish!)

Signal Region

- Governed by the probability to
 - observe a sign-flipped lepton (become same-sign 2L)
 - → find an extra (fake) lepton (become 3L)

This is the dominant systematic error (6%~34%, depends on b' mass).

Other big errors are Jet energy scale (14%~20%), PDF (7%~11%).

All the systematic uncertainties are determined assuming the early condition.

Significance Calculation

HT Distributions for 300, 400, 500 GeV/ c^2 b' signals

M(b') (GeV)	300	400	500	
b'b' LO cross section (pb)	13.6	2.80	0.78	
Signal Yield	34.08	10.58	3.52	Background is
Background Yield	1.08 +1.23/-0.72			independent of
Significance (stat.+syst.)	9.0σ	3.7σ	1.4σ	b' mass.

Quite significant (3.7 σ) even if M(b') = 400 GeV/ c^2 . Not significant at all for 500 GeV/ c^2 , need more data and/or tighter cuts.

Exclusion Limit

- In the case of no signal observed in data, we could set the exclusion limit accordingly at 95% C.L.
- We use a Bayesian limit for null hypothesis tests, with all the systematic effects are included:

Summary: b' Searches Roadmap

Let's wait for the first data from LHC!