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Viable fundamental theories of SUSY-breaking

A viable and compelling fundamental theory of SUSY-breaking (which

determines the origin of SUSY-breaking mass parameters that enter as

coefficients of relevant operators) is not easily established.

In 2006, Intriligator, Seiberg and Shih (ISS) argued that the space of viable

models would be considerably enlarged if one allowed for metastable SUSY-

breaking (i.e., local SUSY-breaking minima that are not global). As long as

the lifetime of the metastable vacuum is sufficiently long, the corresponding

model is a potential candidate for the fundamental SUSY-breaking of our

world.



The framework for metastable SUSY-breaking

We shall employ an ISS-type model to provide the fundamental source

of SUSY-breaking for the MSSM. This model will consist of an SU(Nc)

super Yang Mills theory consisting of NF flavors of vector-like quarks

(denoted henceforth by Q). An SU(3)×SU(2)×U(1) subgroup of the

global SU(NF )×SU(NF ) flavor symmetry is gauged and identified as the

Standard Model gauge group. This is a model of direct gauge mediation of

SUSY-breaking.

In the dual magnetic theory (assuming Nc < NF < 3
2Nc), some of the dual

quarks acquire non-zero vevs at the SUSY-breaking metastable minimum.

The hidden sector quarks carry meta-baryon number [“meta” is used to

distinguish this from ordinary baryon number carried by the SM quarks],

which is spontaneously broken at the ISS scale, denoted by ΛISS.
∗

∗Since the ISS sector is vector-like with respect to the SU(NC), the meta-baryon number is a non-

anomalous global symmetry.



The PNGB of metastable SUSY-violation

The spontaneous breaking of meta-baryon number yields an exactly massless

Goldstone boson, P. But, we do not expect the meta-baryon number global

symmetry to be exact to arbitrarily high energy scales.

Let MU ≫ ΛISS be the scale at which the global meta-baryon number

is explicitly broken. Taking the (irrelevant) operators generated at this

high-scale into account, the Goldstone boson of spontaneous meta-baryon

number breaking acquires a mass—it is now a pseudo-Nambu-Goldstone

boson (PNGB).

The lowest gauge-invariant operator (involving fields of the electric theory)

that violates meta-baryon number is

δW ∼
1

ΛNc−3
U

QNc ,

where we take Nc > 3 (otherwise the above operator is no longer irrelevant).



If for some reason, the above operator is disallowed (due, say, to discrete

symmetries preserved at the scale MU) one can introduce an extra singlet

field S and choose,

δW ∼
1

ΛNc+p−3
U

QNcSp ,

for some suitably chosen p. In either case, P acquires a non-trivial potential

due to the explicit breaking:

V ∼ Λ4
ISS

(

ΛISS

MU

)Nc+p−3

U(P/ΛISS) ,

where U(x) = U0 + cx2 + . . . . Consequently,

m2
P ∼ Λ2

ISS

(

ΛISS

MU

)Nc+p−3

.



A range of possible PNGB masses

The choice of MISS and MU is highly model-dependent. In the framework of gauge-

mediated SUSY-breaking models, one expects ΛISS to be in the TeV to multi-TeV range.

In this work we choose:

ΛISS ∼ 2 TeV ,

which is a wildly optimistic choice (most probably this scale is significantly larger).

For the high-energy scale MU , one can imagine a number of possible choices:

• the reduced Planck scale (2 × 1018 GeV)

• the grand unification scale (2 × 1016 GeV)

• the right-handed neutrino (seesaw) scale (5 × 1014 GeV)

Finally, we choose Nc and p. As we previously indicated that Nc > 3, we consider three

values Nc + p = 4, 5, 6. Taking the extremes yields a range of masses

mP ∼ 6 × 10−11 eV — 4 MeV .



PNGB quantum numbers

The ISS sector consists of vector-like quarks with SU(Nc) gauge-interactions

that conserve C and P separately.

Thus, we can assign definite C and P quantum numbers to P. Since the

meta-baryon current is a vector (not axial vector) current, it follows from:

〈0|Jµ
MB(0)|P〉 = fPqµ ,

that C(P) = −1 and P (P) = +1. In contrast, the SM pion, for which

〈0|Aµ(0)|π〉 = fπqµ (where Aµ = ūγµγ5d is an axial vector current) implies

that C(π) = +1 and P (π) = −1.

Thus, P is a CP-odd, C-odd scalar. As such, it cannot couple diagonally to

a fermion-antifermion pair or scalar particle antiparticle pair.



How to couple a CP-odd, C-odd scalar to gauge bosons

By C-invariance, a C-odd scalar can only couple to an odd number of

photons. In particular, P cannot couple to two photons. Likewise, P

cannot couple to two gluons (although it can couple to 2n gluons for n ≥ 2

by making use of the fabc tensor).

The C and P conserving coupling of P to three photons (or gluons) with

the least number of derivatives is unique (Dolgov 1968):

Leff =
g3
3

Λ6
ISS

dabc(DρGαβ)a(DβGστ)
b(DρDαGστ)c P ,

where (DρGαβ)a ≡ Dab
ρ Gb

αβ, etc. Here, Ga
µν ≡ ∂µAa

ν −∂νAa
µ−gfabcA

a
µAb

ν

is the gluon field strength tensor, Dab
µ ≡ δab∂µ + gfabcA

c
µ is the covariant

derivative acting on an adjoint field, and dabc ≡ 2Tr({Ta, Tb}Tc) is the

totally symmetric tensor of color SU(3).



∂µP

At low-energies an effective operator arises in which P is derivatively-

coupled to three gauge bosons. This effective operator is produced via the

off-diagonal coupling of P to the hidden sector quarks and squarks (Q),

which then rescatter and eventually (after some number of loops) convert

into off-shell SM gauge bosons (gluons, photons, Ws and Zs).

The SM gauge bosons can couple to currents made up of SM fermions.

This yields an effective dimension-five coupling of P to the SM currents,

which scales as Λ−1
ISS. The dominant contribution to this effective coupling

arises when the momenta of the off-shell gauge bosons are of O(ΛISS).

In contrast, the decay rate to on-shell gauge bosons (e.g. P → γγγ) is

extremely suppressed due to the Λ−6
ISS suppression of the Dolgov operator.



PNGB couplings to hadronic vector currents

∂µP

Q

Q

QγµQ

Write the flavor current as a sum of the baryon number current Jµ
B ≡ P

i Q̄iγ
µQi and

F µ ∼ Q̄γµT aQ , where Tr T a = 0 ,

Consider first F µ given above. The dominant momentum passing through this diagram is

of order ΛISS. Thus, we can treat the Q propagators in the mass insertion approximation.

An even number of mass insertions is required. The triangle with no mass insertions

vanishes, and with two mass insertions yields a result proportional to Tr(M2T a). The

latter vanishes for degenerate quark masses. Hence, the above diagram yields a local

interaction of the form:

Lint ∼ α3
s(ΛISS)

∆m2
Q

Λ2
ISS

F µ

ΛISS

∂µP .



Integrating by parts to get the non-derivative coupling of P to F µ yields†

Lint ∼ α
3
s(ΛISS)

∆m2
Q

Λ2
ISS

P ∂µF µ

ΛISS

.

At this point, we can freely shift F µ → F µ + cJµ
B, since ∂µJµ

B = 0. As an example.

consider the strangeness current Jµ
S = s̄γµs. At low momenta (much smaller than mW ),

∂µJ
µ
S =

GF sin θc√
2

[ūγν(1 − γ5)d s̄γ
µ
(1 − γ5)u + h.c.]

due to the effective ∆S = ±1 four-Fermi weak interaction. To compute the decay rate

for K± → π±P , we use 〈0|ūγν(1 − γ5)d|π−〉 = ifπqµ
π and similarly for K to obtain:

M(K
± → π

±P) =
GF√

2

α3
s(ΛISS)

Λ3
ISS

m
2
s sin θcfπfK

m2
K

2
.

There are other contributions to the decay rate for K± → π±P that are significantly

larger than the one computed above. These arise from effective flavor-changing Yukawa

couplings that are generated by purely weak interaction effects.
†If F µ is the ordinary baryon current, then no quark mass insertions are necessary. However, after

integrating by parts, we find that the low-energy coupling of P to the baryon current due to QCD

interactions vanishes due to the conservation of the baryon current.



Flavor-violating PNGB Yukawa couplings

The flavor-violating Yukawa interactions (mediated by the electroweak sector) arise from

diagrams such as:

∂µP

sL

UL

dL

W +

W 3

W−

dLγµsL

where UL = (uL, cL, tL). These contributions are GIM-suppressed by a factor of

∆m2
q/Λ2

ISS. The contribution from the top quark in the loop dominates, and the resulting

effective operator for the dsP interaction is given by:

α3
2

Λ3
ISS

m
2
tVtdV

∗
tsdγ

µ
(1 − γ5)s ∂µP + h.c.

Integrating by parts yields the desired Yukawa coupling:

LdsP ∼ α2
3m

2
tVtdV

∗
tsms

Λ3
ISS

idγ5sP + h.c.



The effective Yukawa coupling is

λ ∼ α3
2m

2
tVtdV

∗
tsms

Λ3
ISS

∼ 5 × 10−15

„

2 TeV

ΛISS

«3

,

using |VtdVts| ∼ 3 × 10−4. Thus,

Γ(s → dP) =
λ2ms

16π
∼ 7 × 10

−32
GeV

„

2 TeV

ΛISS

«6

.

Roughly, we expect Γ(K± → π±P) ∼ ξΓ(s → dP), where ξ ∼ O(0.1) due to the

wave functions of the exclusive initial and final states. The K± lifetime is of order 10−8

sec., corresponding to a width of about 5 × 10−16 GeV. Thus, the branching ratio for the

rare kaon decay into pion plus PNGB is roughly

BR(K± → π±P) ∼ 10−17

„

2 TeV

ΛISS

«6

.

The strongest experimental bounds on such decays are for approximately massless PNGBs,

and give a branching ratio below 6 × 10−11. Our predicted branching ratio is significantly

below these experimental bounds.



Flavor-conserving PNGB Yukawa couplings

The flavor-conserving Yukawa interactions (mediated by the electroweak sector) arise from

diagrams such as:

∂µP

FL

FL

FL

W +

W 3

W−

FLγµτ3FL

The resulting effective operator is of the form:

α3
2(ΛISS)

ΛISS

fγ
µ
(1 − γ5)f∂µP .

Integrating by parts and using the free field equations then yields:

LPff ∼ α3
2(ΛISS)mf

ΛISS

ifγ5f P ,

which is an allowed interaction, as the weak interactions violate C. Note that in contrast

to the flavor-changing couplings that are suppressed by 1/Λ3
ISS, the flavor-conserving

couplings of P scale as one inverse power of ΛISS.



Constraints from Astrophysics

1. The neutrino mass is nonzero, so it too will have a Yukawa coupling to P given by

λννP ∼ α3
2mν

ΛISS

∼ 10
−19

„

2 TeV

ΛISS

«

.

This leads to a new energy loss mechanism for supernovae. Neutrinos trapped in the hot

plasma can bremsstrahlung the very weakly interacting PNGBs, which transport energy

out of the star. However, the coupling is too small for this to be a significant effect.

2. The electron Yukawa coupling λeeP can be similarly estimated. We write this in the

form αP ≡ λ2
eeP/4π:

αP ∼ 10−23

„

2 TeV

ΛISS

«

.

The actual observational bound of Raffelt and Weiss for the coupling of a light spin zero

boson (e.g., the axion) to electrons is αa < 0.5 × 10−26, assuming that the boson is

light enough to be produced in the star (by Compton scattering or by bremsstrahlung),

and assuming that it subsequently escapes. This constraint would rule out models of the

type considered in this talk if mP <∼ 104—105 eV and ΛISS <∼ 4000 TeV.



Conclusions

• In models of metastable SUSY-violation, one typically finds a

spontaneously-broken meta-baryon number symmetry (with small

explicit-breaking effects originating from very high scales). This leads to

a light pseudo-Nambu-Goldstone boson, P.

• P is a CP-odd, C-odd scalar. It can communicate with the Standard

Model (SM) via its couplings to SM gauge bosons. C-invariance in the

hidden sector dictates that the effective operator that couples P to SM

particles must involve at least 3 intermediary SM gauge bosons.

• The only significant phenomenological constraint that we can find are

from astrophysical limits on the energy loss mechanism of red giants. If

the ISS scale is below 4000 TeV, this constraint imposes a lower bound

on the PNGB mass, which constrains the fundamental SUSY-breaking

model.


