# Colour-dressed one-loop amplitudes from generalized unitarity

[CERN, Geneva 2009]

Jan Winter <sup>a</sup>

– Fermilab –



- Results for colour-ordered amplitudes
- → algorithm based on method by Ellis, Giele, Kunszt, Melnikov
  - **Extension of numerical method to colour-dressed amplitudes**
- → first preliminary results ... work in progress

<sup>a</sup> In collaboration with: W. Giele and Z. Kunszt

## C++ code to calculate ordered amplitudes

#### Implemented algorithm based on ...

[Ellis, Giele, Kunszt, ArXiv:0708.2398]4dim method, cut-constructible part[Giele, Kunszt, Melnikov, ArXiv:0801.2237]Ddim method, rational part[Giele, Zanderighi, ArXiv:0805.2152]Application of Ddim method to pure gluons

independent implementation of EGKM method (from scratch, no translation of Fortran routines)
good xcheck of generalized-unitarity method and its results

### *N* external gluons & their polarizations $\rightarrow$ (leading-)colour-ordered 1-loop amplitude (FDH)

accuracy – numerical stability of algorithm

$$\varepsilon_{\rm dp,sp} = \log_{10} \frac{|\mathcal{A}_{N,C++}^{(1)(\rm dp,sp)} - \mathcal{A}_{N,\rm anly}^{(1)(\rm dp,sp)}|}{|\mathcal{A}_{N,\rm anly}^{(1)(\rm dp,sp)}|}, \qquad \varepsilon_{\rm fp} = \log_{10} \frac{2 |\mathcal{A}_{N,C++}^{(1)(\rm fp)}[1] - \mathcal{A}_{N,C++}^{(1)(\rm fp)}[2]|}{|\mathcal{A}_{N,C++}^{(1)(\rm fp)}[1]| + |\mathcal{A}_{N,C++}^{(1)(\rm fp)}[2]|}$$

efficiency – scaling of computing time with # of legs  $N \quad o \quad au \sim N^9$ 

### Accuracy

(calculations shown are in double precision only) [GIELE, WINTER, ARXIV:0902.0094]

 peak positions & tails are OK, comparable to Rocket (Rucola) results [GIELE, ZANDERIGHI]
start losing finite-part precision about N = 10, 11, lost when N = 15 (double precision not enough, too many large numbers involved)



# Speed of the calculation

(calculations shown are in double precision only) [GIELE, WINTER, ARXIV:0902.0094]

- igsquirin we checked algorithm for polynomial complexity  $( au \sim N^x)$
- we checked for asymptotic value of x using the fractions:  $x = \ln \frac{\tau_{N+1}}{\tau_N} / \ln \frac{N+1}{N}$



# Algorithm for full one-loop amplitudes

- $\Rightarrow$  Construction of an algorithm of exponential complexity. Colours included. (see Giele's talk)
- $\Rightarrow$  Our naive expectation of the asymptotic scaling is  $(f \times 5)^N$  for N legs.
- $\Rightarrow$  Colour-dressed recursions give factor f > 1, can be as large as 4.
- $\Rightarrow$  Number of pentagons rise with  $5^N$  ... asymptotic behaviour of  $\mathcal{S}_2(N,5)$ .
- input: external parton momenta & polarizations plus their explicit colours (colour-flow representation) output: amplitude M<sub>1</sub> in form of complex number

### Based on EGKM algorithm for colour-ordered amplitudes. Extensions are necessary.

Decomposition of the integrand: sums over ordered cuts change into sums over partitions including non-cyclic, non-reflective permutations of the initial partitions.



- Calculation of the integrand's residues: use colour-dressed recursions and sum over internal polarizations and internal colours.
- Symmetry factor of 1/2! needs to be applied to bubble coefficients.

# Unordered gluons: partitions and subtractions

decomposition of integrand

$$\mathcal{A}_{N}^{(D_{s})}(\{p_{i}\},\ell) = \frac{\mathcal{N}_{0}(\{p_{i}\},\ell) + (D_{s}-4)\mathcal{N}_{1}(\{p_{i}\},\ell)}{d_{1}d_{2}\dots d_{N}} = \sum_{k=2}^{5} \sum_{RP_{\pi_{1}}\dots\pi_{k}(1,2,\dots,N)} \frac{\bar{C}_{\pi_{1}}^{(D_{s})}(\ell)}{d_{\pi_{1}}\dots d_{\pi_{k}}}$$

 $\square$  number of total partitions:  $\max\{1, (k-1)!/2\} \times S_2(N,k) \Rightarrow \text{increased number of terms}$ 

| ord.) | N | 5-gons | boxes | triangles | bubbles | total | unord.) | N | 5-gons | boxes | triangles | bubbles | total  |
|-------|---|--------|-------|-----------|---------|-------|---------|---|--------|-------|-----------|---------|--------|
|       | 4 | 0      | 1     | 4         | 6       | 11    |         | 4 | 0      | 3     | 6         | 3       | 12     |
|       | 5 | 1      | 5     | 10        | 10      | 26    |         | 5 | 12     | 30    | 25        | 10      | 77     |
|       | 6 | 6      | 15    | 20        | 15      | 56    |         | 6 | 180    | 195   | 90        | 25      | 490    |
|       | 7 | 21     | 35    | 35        | 21      | 112   |         | 7 | 1680   | 1050  | 301       | 56      | 3087   |
|       | 8 | 56     | 70    | 56        | 28      | 210   |         | 8 | 12600  | 5103  | 966       | 119     | 18788  |
|       | 9 | 126    | 126   | 84        | 36      | 372   |         | 9 | 83412  | 23310 | 3025      | 246     | 109993 |

ord.) number of orderings however grows as (N-1)!/2, unord.) Stirling numbers grow as  $k^N$ 

#### > solving for numerator coefficients requires subtractions except for highest cut

Subtraction terms identified by de-pinching, may cause shifts in loop momenta
e.g. 4-gluon bubble 01|23 has 4 triangle subtraction terms:
0|1|23 with ℓ̂ = ℓ and ℓ̂ = −ℓ + p<sub>23</sub> and 2|3|01 with ℓ̂ = −ℓ and ℓ̂ = ℓ + p<sub>01</sub>

CERN, August 10, 2009 - p.6

## **Colour-dressed recursion relations**

show exponential growth with N, <u>cf.</u> [DUHR, HÖCHE, MALTONI], implemented in ...

### COMIX ... SM tree-level ME generator based on generalized colour-dressed Berends–Giele recursions

[GLEISBERG, HÖCHE]

colour-flow decomposition for gluon currents used in our study

$$\begin{split} J_{\mu}^{IJ}(1,2,..,n) &= \sum_{\sigma \in S_{n}} \delta_{j\sigma_{1}}^{I} \delta_{j\sigma_{2}}^{i\sigma_{1}} \cdots \delta_{j\sigma_{n}}^{i\sigma_{n-1}} \delta_{J}^{i\sigma_{n}} J_{\mu}(\sigma_{1},\sigma_{2},..,\sigma_{n}) \\ &= \kappa^{-2}(1,2,..,n) \left[ \sum_{P_{\pi_{1}\pi_{2}}} \left( \delta_{K}^{I} \delta_{M}^{L} \delta_{J}^{N} - \delta_{M}^{I} \delta_{K}^{N} \delta_{J}^{L} \right) \left[ J_{\mu}^{KL}(\pi_{1}), J_{\mu}^{MN}(\pi_{2}) \right] + \right] \\ &\sum_{P_{\pi_{1}\pi_{2}\pi_{3}}} \left( \delta_{KMOJ}^{ILNP} + \delta_{OMKJ}^{IPNL} - \delta_{KOMJ}^{ILPN} - \delta_{MOKJ}^{INPL} \right) \left( \left\{ J_{\mu}^{KL}(\pi_{1}), J_{\mu}^{MN}(\pi_{2}), J_{\mu}^{OP}(\pi_{3}) \right\} + \pi_{1} \leftrightarrow \pi_{2} \right) \right] \end{split}$$

• our tree-level amplitude calculations scale as  $4^N$ (in COMIX,  $V_{gggg}$  is replaced by effective  $V_{ggg}$ , which yields  $3^N$  scaling)

needed to calculate the LHS of the parametric form when solving for the coefficients

$$\operatorname{Res}_{\kappa_{1}\cdots\kappa_{n}}\left(\mathcal{A}_{N}^{(D_{s})}(\ell)-\sum_{k=n+1}^{5}\sum_{\text{parts}}\frac{\bar{C}_{\pi_{1}\cdots\pi_{k}}^{(D_{s})}(\ell)}{d_{\pi_{1}}\ldots d_{\pi_{k}}}\right) = \sum_{\substack{\{\lambda_{j}=1\}\\\{(IJ)_{j}\}}}^{D_{s}-2}\prod_{i=1}^{n}\mathcal{M}_{0}\left(\ell_{\pi_{i-1}}^{(\lambda_{i-1}(IJ)_{i-1})},\{p_{\pi_{i}}\},-\ell_{\pi_{i}}^{(\lambda_{i}(JI)_{i})}\right)$$

internal colour sum is costly: reuse as many  $J_{\mu}^{IJ}$  as possible, store & compute only non-zeros

# First preliminary results

Results can be tested: (not to mention internal consistency checks)

 $(1) \Rightarrow$  double poles obey  $\mathcal{M}_1^{(\mathrm{dp})} = -c_{\Gamma} \, \epsilon^{-2} \, N_{\mathrm{C}} N \, \mathcal{M}_0$ 

 $(2) \Rightarrow$  vs colour decomposition into ordered amplitudes (using the "old" algorithm)

schematically 
$$\mathcal{M}_1 = \sum_{P(2,\dots,N)/Z_{N-1}} \left\{ \sum_r^{2^N} N_{\mathcal{C}}^{b(r)} \prod_s^N \delta_{j_s(r)}^{i_s(r)} \right\} m_1(1,\dots,N)$$

■ Table of very first results:  $2 \rightarrow N - 2$  gluons, (+ + - - ..) polarizations,  $\binom{..1131..}{..1311..}$  colours & random PSPs obeying separation cuts ... computation times in secs (2.20GHz IntelCore2Duo)

| ord.) $N$ | cut-c,4D factor |      | full,5D factor |      | unord.) $N$ |   | cut-c,4D factor |     | full,5D factor |      | OK?          |
|-----------|-----------------|------|----------------|------|-------------|---|-----------------|-----|----------------|------|--------------|
| 4         | 0.025           |      | 0.045          |      |             | 4 | 0.05            |     | 0.105          |      | $\checkmark$ |
| 5         | 0.185           | 7.4  | 0.355          | 7.9  |             | 5 | 0.315           | 6.3 | 0.74           | 7.0  | $\checkmark$ |
| 6         | 0.83            | 4.5  | 2.7            | 7.6  |             | 6 | 1.37            | 4.3 | 4.59           | 6.2  | $\checkmark$ |
| 7         | 7.95            | 9.6  | 27.5           | 10.2 |             | 7 | 8.4             | 6.1 | 32.5           | 7.1  | $\checkmark$ |
| 8         | 86.5            | 10.9 | 439            | 16.0 |             | 8 | 52              | 6.2 | 234            | 7.2  | $\checkmark$ |
| 9         | 2220            | 25.7 | no             |      |             | 9 | 380             | 7.3 | 3370           | 14.4 | no           |
|           |                 |      |                |      |             |   |                 |     |                |      |              |

ord.) factors increase with larger N,

unord.) growth seems to follow  $(f \cdot 5)^N$  , 1 < f < 2

Have to find the reason(s) for the odd N = 9 results.

# Summary

C++ code that implements Ellis-Giele-Kunszt-Melnikov method of calculating colour-ordered one-loop amplitudes using unitarity cuts.

- $\Rightarrow$  good double-precision results for gluon case.
- ⇒ potential improvements: fitting coefficients, higher precision.

Algorithm and implementation for full amplitudes using colour-dressed recursion relations.

- $\Rightarrow$  algorithm is of exponential complexity.
- $\Rightarrow$  asymptotic scaling of  $\sim 7^N$  seen so far, does it persist for many legs?
- $\Rightarrow$  more to do: fully include quarks, squared amplitudes, OLE, xsecs (pure jets)

#### First numerical results presented for colour-dressed one-loop amplitudes. Algorithm works.

- $\Rightarrow$  more stress tests needed: increase N, accuracy of results.
- $\Rightarrow$  colour-sampling convergence test when integrating  $2\operatorname{Re}(\mathcal{M}_0\mathcal{M}_1^*)$ .