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– implementations

– applications

• Latter

– is good for making improvements

– could lead to unnecessary repetitions (waste)

Workshops could be useful to reduce waste

(at the end efficient and correct codes are needed)



Cross sections at NLO
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Born cross section

• Well understood
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• Most important messages for tree level:

– solutions to efficient PS generation

(PHEGAS, MADEVENT) 

– recursive aproach to amplitudes: 

BG is most efficient for large m

– MC summation over helicity is useful

– MC summation over colour is the ‘only
practical’ way for ‘colourful’ processes
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methods
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– complex momenta

– one-loop integral basis

• many (too many?) numerical implementations:

– c++: BlackHat (2), Winter, Lazopoulos

– f90: HELAC-1LOOP/CutTools, Rocket, 
SUSYloop90 (Kardos)

• Essentially

– same for cut-constructible (C) parts

– different in computing the rational (R) parts
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Precision plots for six-gluon amplitudes
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• Theoretical basis well understood

• Most implementations use subtractions:

– dipole (CS+DT)

– antennae (GGG)

– residuum (FKS)

• Majority of calculations used dipole subtractions
in the last decade (except MC@NLO), but it

– cannot directly be generalized to NNLO 

(ï antennae?)

– inconvenient for matching with PS

– becomes inefficient for multileg processes
due to priliferation of dipoles (ï FKS?)
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• New scheme at NLO that solves previous
objections simultaneously

– minimum number of subtraction terms at
NLO (as FKS)

– uses exact PS factorisations/convolutions
(similarly to CS)

– permutation symmetry of the SME (if any) is 
resepcted (as FKS)

– works at any order in PT


