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Latter

- is good for making improvements

- could lead to unnecessary repetitions (waste)

Workshops could be useful to reduce waste
(at the end efficient and correct codes are needed)



Cross sections at NLO
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Born cross section

- Well understood
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Born cross section

- Well understood
- Robust tools are available (too many?)
- Most important messages for tree level:
- solutions to efficient PS generation
(PHEGAS, MADEVENT)
- recursive aproach to amplitudes:
BG is most efficient for large m
- MC summation over helicity is useful

- MC summation over colour is the ‘only
practical’ way for ‘colourful’ processes
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- Essentially
- same for cut-constructible (C) parts
- different in computing the rational (R) parts



SUSYloop90

- BG recursion for tree amplitudes
- SUSY decomposition for loop ones
- Calcutaion is in d=4 for both C and R



Number of events

SUSYloop90

- BG recursion for tree amplitudes
- SUSY decomposition for loop ones
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Real corrections

- Theoretical basis well understood

- Most implementations use subtractions:
- dipole (CS+DT)

- antennae (GGGQG)

- residuum (FKS)

- Majority of calculations used dipole subtractions
in the last decade (except MC@NLO), but it

- cannot directly be generalized to NNLO
(= antennae?)
- inconvenient for matching with PS

- becomes inefficient for multileg processes
due to priliferation of dipoles (= FKS?)



Results from studies at NNLO

- Easy separation of soft & collinear singularities
(to all orders)

- General subtraction scheme at NNLO



Results from studies at NNLO

- Easy separation of soft & collinear singularities
(to all orders)

- General subtraction scheme at NNLO

- New scheme at NLO that solves previous
objections simultaneously

- minimum number of subtraction terms at
NLO (as FKS)

- uses exact PS factorisations/convolutions
(similarly to CS)

- permutation symmetry of the SME (if any) is
resepcted (as FKS)

- works at any order in PT



