
Matrix Elements and Shower
CKKW and MLM

P. Nason
INFN, Sez. of Milano Bicocca

Cern, 11-8-2009

Typeset with TeXmacs

1



Historical approach: CKKW
Catani, Krauss, Kuhn, Webber (2001), (in e+e− annihilation).

In a nutshell:
Clusterize ME partons to reconstruct a shower skeleton
(by pairing up particles that yield smallest hardness t recursively)

Red blobs have
decreasing t

• Do not allow t below a given cut tcut.

• Re-evaluate ME couplings at scales t of vertices in shower skeleton

• Assign Sudakov form factors to the skeleton (as in Shower MC)

• Continue the shower for t < tcut with the Shower MC
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CKKW: details
CKKW based upon the theory of soft-collinear radiation in QCD, through
the following steps:

A) Theory of multiple emissions in the soft collinear regions
(Mueller, 1981; Ermolaev and Fadin, 1981; Bassetto, Ciafaloni,
Marchesini, etc.)

B) kT -cluster multiplicity calculable at the NLL level in framework A)
(Catani, Dokshitzer, Olsson, Turnock and Webber, 1991)

C) exact kT -cluster ME cross section can be improved with Sudakov form
factors and running αs (i.e. dominant virtual corrections) from B)

D) Completion of the algorithm with subsequent angular ordered shower

Why kT -clusters?

• Because we want to improve the cross section of the most energetic jets

• Because it can be computed at the double log and NLL level
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kT-clusters
Given a set of n particles in an e+e− final state, reconstruct jets by pairing up
recursively pairs of particles with minimum

ykl = 2(1− cos θkl)min (Ek
2, El

2)/Q2.

In essence: Qykl≈ θsoftest
2 Esoftest

2 θk

θl

Ek

El

The pair of particles with minimum ykl are combined into a single pseudo-par-
ticle, with momentum pkl = pk + pl (or any variant of this)

kT -cluster multiplicities can be computed at NLL level using the theory of
multiple soft gluon emission.

In CKKW it is shown how to compute cluster multiplicities at NLL using
angular ordering (i.e. reproduce the results of Catani, Dokshitzer, Olsson,
Turnock and Webber)
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kT-clusters multiplicity
Sudakov form factor as in angular ordered shower, but veto radiation that
yields y > ymin. Introducing: Qmin = ymin

√
Q, t = θE, q = kT = t

√
z (1− z)

∆(Q)= exp

[

−

∫

0

Q2

dt

t

∫

dz
αs(q)

2π
P (z)θ(q − Qmin)

]

= exp

[

− 2

∫

dq

q
dz

αs(q)

2π
P (z)θ(q − Qmin)θ(Qz(1− z)− q)

]

.

For example, for Pqq:

∆q(Q)= exp

[

−

∫

Qm in

Q

Γq(q, Q)dq

]

, Γq(q, Q) =
2CF

π

αs(q)

q

(

log
Q

q
−

3

4

)

For Pgg, Pgq: Γg(q, Q)=
2CF

π

αs(q)

q

(

log
Q

q
−

11

12

)

, Γf(q, Q)=
NF

3π

αs(q)

q

and ∆g(Q) = exp
[

−
∫

Qm in

Q
[Γg(q, Q)+ Γf(q, Q)]dq

]
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Thus, the 2-clusters multiplicity is:
σ2

σtot
= ∆q

2(Q).

3-clusters: The antiquark line gets a factor ∆q(Q) as before.

∆q(Q)

∆q(Q)/∆q(q̃ )

∆q(q̃ )

∆g(q
′)

Γq(q
′, Q)

θ ′

θ

The gluon line from the gluon vertex gets
a factor ∆g(q

′), where q ′= θ ′Eg.
(This uses angular ordering! no gluon
radiation with angles > θ ′)
The quark line from the gluon vertex gets
a factor ∆q(q̃ ), where q̃ = θ ′Eq.
The quark line from the photon to the
gluon vertex gets a factor:

exp

[

−

∫

θ ′

θ dθ2

θ2

∫

dz
αs(q)

2π
P (z)θ(q − Qm in)

]

≈

∆q(Q)

∆q(q̃ )
(in the soft approximation!)

The gluon vertex gets a factor Γq(Q
′).

Thus, the 3-clusters multiplicity is 2∆q
2(Q)

∫

Qm in

Q
∆g(q ′)Γg(q ′, Q)dq ′
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Same (angular ordering) arguments lead to the following values for the 4-
cluster multiplicity diagrams:

Γq(q
′, Q)Γq(q

′′, Q)∆qq̄ gg, Γq(q
′, Q)Γq(q

′′, q ′)∆qq̄ gg,

with ∆qq̄ gg = ∆q
2(Q)∆g(q

′)∆g(q
′′).

The following observation holds to all orders: the Sudakov factors depend only
upon the nodal values of the kT scales q ′, q ′′, 	 at which branching occours,
and on the parton type.

Notice: in an angular ordered shower, the starting evolution scale of a branched
soft parton, Esoft θ, is equal to the kT .
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In CKKW: replace approximate Γ factors by exact matrix element.

Detailed prescription:

• Consider the cross section dσn to produce n partons (n 6 N), all sepa-
rated by a minimum distance parameter ymin, computed with a fixed
value of αs. Generate n body kinematics with probability dσn.

• From the given kinematics reconstruct the scheleton, by pairing up
recursively partons with smallest y. Only pair up partons that can come
from the same splitting process (i.e. gg, qg, qq̄ ; no qq, q ′q̄ , etc.).
Assign to each vertex i of the skeleton the corresponding qi = Q yi

√
.

• Associate factors ∆(qi)/∆(qj) (qi > qj) with each intermediate line of
the skeleton, a factor ∆(qi) with each final line of the skeleton, and
αs(qi)/αs(Q) with each node of the skeleton. Compute the product of
all this factors and accept the event with a probability equal to this pro-
duct.

Originally, N (and/or Qmin) was assumed to be large enough, so that the
result was insensitive to N (i.e., most events had less than N clusters)
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CKKW with finite N

In the original CKKW scheme, N is assumed to be large enough
(i.e., almost negiglible amount of final states with N clusters).
Since N is finite, this means that Qmin should be kept large enough.
A practical alternative to this (Mrenna and Richardson, 2003;
Schaelicke and Krauss, 2005) is the following:

In the matrix element for N clusters, replace the Qmin scale used
to compute the Sudakov form factors and the vetoed showers with qn,
(the y

√
Q value of the smallest cluster.)

This was, starting from the N clusters event, the parton shower will be able to
generate N + 1, N + 2, etc. clusters with merging scales larger than Qmin.
The N hardest clusters will be accurate at the matrix element level, while the
subsequent ones will be only MC accurate.
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Notice: with this prescription Qmin can be chosen as low as one likes
(i.e., even near the shower cutoff). In this limiting case, no subsequent
showers will be generated by the Monte Carlo for events with less than
N clusters.

The scale Qmin and N appear here as the delimiter between the
exact matrix element calculation and the shower approach: production of more
than N clusters will rely upon the SMC, as well as production of clusters
below Qmin.
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Interfacing to a Shower
We must complete the calculation with a full shower.
We only included splittings with kT above Qmin. In the shower we should:

A) Avoid to generate splittings with kT > Qmin; those were already
generated by the matrix elements

B) Include all missing radiation with kT < Qmin

(A) is achieved by introducing a θ(Qmin − kT) in the splitting vertices
and Sudakov form factors of the Shower Monte Carlo. In practice, this is
achieved by the veto algorithm:

→ At any stage of the generation of a branching starting from a scale t′ in
the SMC, generate the branching at a scale t′′ < t′ and generate the z

value with the usual method.

→ If kT = t
√

z(1 − z) > Qmin, discard the current branching, set t′ to the
value t′′, and go back to the previous step. Otherwise, continue.

(B) is more subtle: one should allow branchings from each intermediate and
final line of the skeleton that were not included in the ME calculation.
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CKKW proposed the following:

The final state particles are fed into an angular ordered Monte Carlo,
their initial showering angle is set equal to the angle at the vertex where
the parton was initially produced.

The vertex where the parton is initially produced is found by walking up from
the given final state parton in the shower skeleton, skipping vertices where the
parton in question is merged with a softer parton, and stopping at the first
vertex where this is not the case.
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Introduce the following notation: when drawing a vertex, draw the final state
hardest line parallel to the incoming line.

green: fermions, red: gluons; straight lines: hardest

The production vertex of each parton (1 to 8) is
indicated with the corresponding number.

The product of Sudakov form factors in CKKW is
equivalent to introduce a singe ∆(q) for each final
state line, with q computed at its

initial production vertex

Equivalently, we define the hardest lines in the graph as the lines going from
a final state parton to its initial production vertex.
The system of hardest lines covers the whole graph.
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Reordering in angle
The kT -ordered skeleton can be reordered in angle without changing the q

value associated with each final line.

θ1 θ2 θ3

If θ3 > θ2 we can permute the two lines (they are both soft) without changing
kT (which is q2 = θ2E2 and q3 = θ3E3).
If θ3 > θ1 we can move vertex 3 to the initial line; θ3 does not change, and
neither does q3.
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After angular ordering:

Initial parton

Harder parton

θ1 production vertex

θ2

θ3

The CKKW prescription provides a single shower from θ1. The horizontal line
from θ1 has almost constant energy, since radiation from 2, 3 is soft. So, a
shower from θ1 to the minimum is like a shower from θ1 to θ2, plus a shower
from θ2 to θ3 plus a shower from θ3 to the minimum.

It is then obvious that the CKKW prescription is kinematically equivalent to
add truncated showers (P.N. 2004) to the skeleton.

HOWEVER: incorrect colour pattern ...
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If the MC generates parton X at angle θ, with θ1 > θ > θ2:
Colour connection in CKKW:

θ

X

θ1

θ2

θ3

Colour connection with truncated shower:

θ1

X

θ

θ2

θ3

So: Larger colour gaps with CKKW
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“Theorist” view of MLM matching
MLM: Generate the matrix element kinematics, build the skeleton, and
reweight with αs(q) as in CKKW. Start the shower from the given final state,
but kill the event if the jets reconstructed after the shower do not match the
parton jets.

Is it the same as CKKW?

In the following I will show that the answer is YES,if the initial condition for the shower is according to the CKKW prescription
(i.e. equal to the angle where the parton was initially produced).
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Assume that the showering scales are set according to the CKKW method,

Looking (for example) at parton 1, the MC
builds a shower starting from the wide angle (1,2).

In CKKW: a probability factor ∆q(Q) is provided.
There is one such factor for each hardest line.

In MLM: the event is killed if if the MC
generates a kT > Qmin. The survival probability
is ∆q(Q), as in CKKW. There is one such factor
for each hardest line.

(Recall: ∆q(Q) = exp
[

−
∫

0

Q2 dt

t

∫

dz
αs(q)

2π
Pqq(z)θ(kT − Qmin)

]

)

Same weight for the event; is the radiation below Qmin also the same?
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The probability to undergo a few radiations in MLM is

θ1 θ2 θ3

1 2
3

∆(θ1, θ2)
dθ2

θ2

αs(kT
(2)

)

2π
P (z1)∆(θ2, θ3)

dθ3

θ3

αs(kT
(3)

)

2π
θ(Qmin > kT

(2)
, kT

(3)
)∆(θ3)

If we normalise the above to the survival probability (we divide the above

expression to ∆(Q) = exp
[

−
∫

0

Q2 dt

t

∫

dz
αs(q)

2π
Pqq(z)θ(kT − Qmin)

]

)

we take away from the exponent in each Sudakov form factor, the region with
kT > Qmin. So, we end up with the vetoed shower required in CKKW.

So:

same radiation below Qmin
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Colour ordering

What about colour ordering? CKKW (and MLM) are incorrect;
One should reorder the skeleton in angle, and attach properly the MC
emissions originating inside the skeleton (may be messy)

Simpler alternative:
At the end of the shower, build recursively an angular ordered skeleton,
and assign colours according to it.
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Conclusions

• If we can use for initial showering angle the angle at the vertex where
the parton was initially produced, MLM and CKKW are equivalent

• Colour problem in CKKW can be easily fixed
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Prospects

What is the use of this? (I don’t know, may be useless)

Why use MLM matching in a first place? (I don’t know, ask Michelangelo)

This result has emerged as part of a (personal) effort to understand
the relationship between different matching schemes:

• traditional CKKW (with angular ordered showers)

• MLM matching

• matching with dipole showers

and how coherence is preserved with the various methods.
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