Merging matrix elements & parton showers

Frank Krauss

IPPP Durham

CERN, 11.8.2009

F. Krauss

Merging matrix elements & parton showers



or:  How to embed matrix elements
without destroying the accuracy of the shower

(independent of the shower)

This talk is primarily based on
S.Hoeche, F.K., S.Schumann, & F.Siegert, JHEP 0905 (2009) 053

see also: K.Hamilton, P.Richardson, J.Tully, arXiv:0905.3072 [hep-ph]

for an implementation with angular ordered showers



Matrix elements vs. parton showers
o Different perturbative expansions: fixed order vs. log order.

o Different realms of applicability.

ME vs. PS as vs. Log

@ MEs: hard, large-angle emissions; all [V S
interferences. L0 4ie

@ PS: soft, collinear emissions;
resummation of large logarithms, not
all interferences.

@ Combine both,
avoid double-counting.
(positive and negative) o

;)m ME

.0 Siet, but alsc
NLO djet
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Reminder: The parton shower

@ Remember Sudakov form factor (no emission probability):

Cmax

A,(t, to) = exp /t / d¢ Z Kab(C, 1)

Gt b=q.g

e Here: Kp,(¢, t) = splitting kernels of evolution
(== Altarelli-Parisi splitting functions for DGLAP evolution)

Also: (...« = resolution criterion, t, ' = evolution parameters.

o Starting from a scale T, find next emission off parton a at t through

Aa( Ta t())

#random - Pa(Ta t) = m )

with to = O(few Ajcp) as infrared cut-off.

(== add ratio of PDFs for initial state shower: backward evolution trick)
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Strategy for merging

S.Catani, F.K., R.Kuhn and B.R.Webber, JHEP 0111 (2001) 063
F.K., JHEP 0208 (2002) 015

@ Basic idea: Decompose phase space into hard, wide-angle and soft,
collinear region through jet measure. Use MEs in hard region (jet
production), PS in soft region (jet evolution).

@ Realise that parton shower approximation to matrix element is at LO
is product of splitting functions.

o (Leading) Logarithmic HO corrections are included through Sudakov
form factors and running of as.

@ Therefore: replace product of splitting functions with ME, keep HO
effects of shower.

@ In original papers above: Reweight ME with appropriate Sudakov
form factors and ratios of s, run a vetoed shower. In ete~ for
angular-ordered shower: NLL accuracy achievable.

@ Question(s): Accuracy in IS shower, relationship to other merging
procedures (e.g. CKKW-L, MLM)
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A new attempt to formalise merging
@ Goal: Make preservation of log accuracy in shower explicit.

@ First replace kernels in QCD evolution equations with
Kap(6F) = Kap™(&1) + K55 (6 D).
with (@ is jet measure of jet clustering algorithm)
KMP(ET) = Kap(€, DO [Qup(€,F) = Que|  and
KISET) = Kan(6,O | Quu — Quo(€. )] -
o Yields modified Sudakov form factor (decomposes trivially):
A(t, to) = AYE(t, 1) - AVS(t, to).

and no-emission probabilities (interpretation see below)

PoT, t)=PME(T, t)- PPS(T, t).
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The PS regime: Truncated showers
o Look into PS-splitting kernel:

KES(6,8) = Ka(€, B)O | Quut — Qub(: )

—> Do not generate emissions in jet regime

(In original algorithm: vetoed shower - Q,;, < Qcyt is not present)

@ But: evolution parameter t may Q> Qs @< Qo Q> Quu
be different from jet parameter o> i >
Q = Truncated showering % % %

Introduced in P.Nason, JHEP 0411 (2004) 040

@ NB: In original algorithm, these emissions have been dealt with by
radiating off the outgoing legs - in principle: logarithmically correct,
in practice: may lead to unphysical colour flows

(Especially for angular-ordered showers, less severe if t ~ Q)
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The ME regime: Sudakov reweighting
@ Look into ME-splitting kernel:

K6 F) = Kanl€, IO [ Qubl6 E) — Qs

— Generate emissions in jet regime only
(Qzp < Qcut is not present)

@ But these emissions are dealt with by higher order ME's
—> Reject complete event.

(Simple to see: This is the Sudakov rejection of original method)
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The algorithm in a nutshell

@ Select parton level event (ME: flavours, colours, momenta)
according to corresponding (partial) cross section

@ Cluster backwards with “inverted” shower (kinematics):
yields {t, &, ¢} of “hard nodes” (branching kinematics)

(Implementation of non-QCD splitting functions helps)
o Reweight with ratios as(pinode)/as(pme) (QCD emissions)

@ Start shower at highest scale, run truncated showers until scale of
next hardest emission node. Reject event if new jet was produced

@ Insert next node and repeat

Obviously: If @ = t, then truncated shower not necessary

This is essentially L.Lonnblad, JHEP 0205 (2002) 046 for FS dipole showers.

Note: This procedure is independent of both shower and jet measure
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ME & PS: Theoretical uncertainties
Uncertainties related to ME-PS merging

@ Choice of parton shower implementation

@ Choice of the jet criterion k-measure, soft eikonal, ..

@ Value of the phase-space separation cut, Qcut

@ Maximum number of jets from hard MEs, Ny,
Uncertainties related to pQCD methods

@ Scale uncertainties from MEs

@ Scale uncertainties from PSs

@ PDF uncertainties

Two implementations currently available
@ SHERPA - uses truncated CS-shower for initial and final state

@ HERWIGH+ - uses truncated angular ordered shower for final state
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Results (DY @ Tevatron): Total cross sections

opy @ Tevatron

9 [ wmiO
. = L
Consequence of the method: E104 —
@ Cross section unaltered 5 Zmax :i
-— =

to LO accuracy o Now =3
(due to unitarity of PS simulation) [ Nmax =2 —
— can employ this to e Neax=1 — R —

cross-check simulation —
L. 0.98
@ Variation of Q. and/or
N,hax should not affect 096
Otor 00 much \ \ \
20 30

43
Qcut/GeV
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Results (DY Tevatron): Jet multiplicity

Data from Data: PRL100(2008)10200:

Consequence of the method:

o(Njey) @ Tevatron @ Jet rates and -spectra
E0E ‘ ‘ improved compared to pure PS
& I simulation
Q
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http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=eprint+0711.3717

Results (DY Tevatron): Jet spectra

Data from b. RL100(2008)1020C

Consequence of the method:
@ Radiation pattern unaltered to PS accuracy

@ Variation of Q. should not affect distributions too much

(But Qeyt must be in range where PS approximation is valid 1)
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ME & PS: The necessity of the truncated shower

(Use HERWIG

(d)

as example: truncated showers not so visible in p
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Forthcoming attractions in SHERPA, v.1.2.0

(All results above with SHERPA v.1.2.0)

@ Including new ME generator COMIX:

o Will allow for significantly higher multiplicities: pp — V + (< 6)j,
QQ + (£ 6)j, (< 6)j quite painless,

(even more feasible - but painful due to integration)

o No more libraries written out, compiled and linked.
@ Including new Catani-Seymour shower
(+ merging, of course);

@ Automated Catani-Seymour subtraction

(generic interface, massive dipoles work in progress)

@ Automated decay chains for all heavy particles

(up to now only user-defined decay chains feasible);




COMIX - a new matrix element generator for Sherpa

T.Gleisberg & S.Hoeche, JHEP 0812 (2008) 039

@ Colour-dressed Berends-Giele amplitudes in the SM

@ Fully recursive phase space generation

@ Example results (cross sections):

gg — ng Cross section [pb]

n 8 9 10 11 12

\/5 [GeV] 1500 2000 2500 3500 5000

Comix 0.755(3) 0.305(2) 0.101(7) 0.057(5) 0.019(2)

Maltoni (2002) 0.70(4) 0.30(2) 0.097(6)

Alpgen 0.719(19)
o [ub] Number of jets
bb + QCD jets 0 1 2 3 4 5 6
Comix 7708(5) | 8.83(2) 1.826(8) 0.450(2) 0.1500(8) | 0.0544(6) | 0.023(2)
ALPGEN 470.6(6) | 8.83(1) 1.822(9) 0.459(2) 0.150(2) 0.053(1) 0.0215(8)
AMEGIC++ 470.3(4) | 8.84(2) 1.817(6)




COMIX - a new matrix element generator for Sherpa

T.Gleisberg & S.Hoeche, JHEP 0812 (2008) 039

@ Colour-dressed Berends-Giele amplitudes in the SM
@ Fully recursive phase space generation
@ Example results (phase space performance):
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Using Catani-Seymour splitting kernels

First discussed in: Z.Nagy and D.E.Soper, JHEP 0510 (2005) 024;
Implemented by M.Dinsdale, M.Ternick, S.Weinzierl Phys.Rev.D76 (2007) 094003,
and S.Schumann& F.K., JHEP 0803 (2008) 038.

o Catani-Seymour dipole subtraction terms as universal framework for
QCD NLO calculations.
@ Factorisation formulae for real emission process:
Full phase space coverage & good approx. to ME.

o Added benefit: All particles always on-shell

Matching/merging with ME improved
v




Results in e"e™ collisions at LEP1
S.Schumann& F.K., JHEP 0803 (2008) 038.
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Results in et e~ collisions at LEP1

Nachtmann-Reiter angle @ LEP1
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Bengtsson-Zerwas angle @ LEP1
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CS-Shower: Results in pp collisions

S.Schumann& F.K., JHEP 0803 (2008) 038.

Ay distribution @ Tevatron Run [1
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CS-Shower: Results in pp collisions

normalised distribution of @ @ Tevatron Run I
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