Merging matrix elements & parton showers

Frank Krauss

IPPP Durham

CERN, 11.8.2009

or: How to embed matrix elements without destroying the accuracy of the shower

(independent of the shower)

This talk is primarily based on S.Hoeche, F.K., S.Schumann, & F.Siegert, JHEP 0905 (2009) 053 see also: K.Hamilton, P.Richardson, J.Tully, arXiv:0905.3072 [hep-ph] for an implementation with angular ordered showers

Matrix elements vs. parton showers

- Different perturbative expansions: fixed order vs. log order.
- Different realms of applicability.

ME vs. PS

- MEs: hard, large-angle emissions; all interferences.
- PS: soft, collinear emissions; resummation of large logarithms, not all interferences.
- Combine both, avoid double-counting. (positive and negative)

Reminder: The parton shower

Remember Sudakov form factor (no emission probability):

$$\Delta_{a}(t,\,t_{0}) = \exp\left\{-\int\limits_{t_{0}}^{t}\frac{\mathrm{d}t'}{t'}\int\limits_{\zeta_{\mathrm{min}}}^{\zeta_{\mathrm{max}}}\mathrm{d}\zeta\,\sum_{b=q,g}\mathcal{K}_{ab}(\zeta,t')\right\}\,.$$

• Here: $\mathcal{K}_{ba}(\zeta, t) = \text{splitting kernels of evolution}$

(Altarelli-Parisi splitting functions for DGLAP evolution)

Also: $\zeta_{\text{max}} = \text{resolution criterion}, t, t' = \text{evolution parameters}.$

• Starting from a scale T, find next emission off parton a at t through

$$\#_{\mathrm{random}} = \mathcal{P}_{a}(T, t) \equiv \frac{\Delta_{a}(T, t_0)}{\Delta_{a}(t, t_0)},$$

with $t_0 = \mathcal{O}(\text{few }\Lambda_{\text{OCD}}^2)$ as infrared cut-off.

(add ratio of PDFs for initial state shower: backward evolution trick)

Strategy for merging

S.Catani, F.K., R.Kuhn and B.R.Webber, JHEP **0111** (2001) 063 F.K., JHEP **0208** (2002) 015

- Basic idea: Decompose phase space into hard, wide-angle and soft, collinear region through jet measure. Use MEs in hard region (jet production), PS in soft region (jet evolution).
- Realise that parton shower approximation to matrix element is at LO is product of splitting functions.
- (Leading) Logarithmic HO corrections are included through Sudakov form factors and running of α_s .
- Therefore: replace product of splitting functions with ME, keep HO effects of shower.
- In original papers above: Reweight ME with appropriate Sudakov form factors and ratios of α_S , run a vetoed shower. In e^+e^- for angular-ordered shower: NLL accuracy achievable.
- Question(s): Accuracy in IS shower, relationship to other merging procedures (e.g. CKKW-L, MLM)

A new attempt to formalise merging

- Goal: Make preservation of log accuracy in shower explicit.
- First replace kernels in QCD evolution equations with

$$\mathcal{K}_{ab}(\xi, \overline{t}) = \mathcal{K}_{ab}^{\mathrm{ME}}(\xi, \overline{t}) + \mathcal{K}_{ab}^{\mathrm{PS}}(\xi, \overline{t}).$$

with (Q is jet measure of jet clustering algorithm)

$$\mathcal{K}_{ab}^{\mathrm{ME}}(\xi, \overline{t}) = \mathcal{K}_{ab}(\xi, \overline{t}) \Theta \left[Q_{ab}(\xi, \overline{t}) - Q_{\mathrm{cut}} \right] \quad \text{and} \quad
\mathcal{K}_{ab}^{\mathrm{PS}}(\xi, \overline{t}) = \mathcal{K}_{ab}(\xi, \overline{t}) \Theta \left[Q_{\mathrm{cut}} - Q_{ab}(\xi, \overline{t}) \right].$$

Yields modified Sudakov form factor (decomposes trivially):

$$\Delta_a(t, t_0) = \Delta_a^{\mathrm{ME}}(t, t_0) \cdot \Delta_a^{\mathrm{PS}}(t, t_0).$$

and no-emission probabilities (interpretation see below)

$$\mathcal{P}_{a}(T, t) = \mathcal{P}_{a}^{\mathrm{ME}}(T, t) \cdot \mathcal{P}_{a}^{\mathrm{PS}}(T, t).$$

200

The PS regime: Truncated showers

Look into PS-splitting kernel:

$$\mathcal{K}_{ab}^{\mathrm{PS}}(\xi, \overline{t}) = \mathcal{K}_{ab}(\xi, \overline{t}) \Theta \left[Q_{\mathrm{cut}} - Q_{ab}(\xi, \overline{t}) \right] \,.$$

⇒ Do not generate emissions in jet regime

(In original algorithm: vetoed shower - Q_{ab} < Q_{cut} is not present)

• But: evolution parameter t may be different from jet parameter $Q \Longrightarrow \mathsf{Truncated} \mathsf{ showering}$

Introduced in P.Nason, JHEP 0411 (2004) 040

 NB: In original algorithm, these emissions have been dealt with by radiating off the outgoing legs - in principle: logarithmically correct, in practice: may lead to unphysical colour flows

(Especially for angular-ordered showers, less severe if $t \simeq Q$)

The ME regime: Sudakov reweighting

Look into ME-splitting kernel:

$$\mathcal{K}_{ab}^{\mathrm{ME}}(\xi,\overline{t}) = \mathcal{K}_{ab}(\xi,\overline{t})\Theta\left[Q_{ab}(\xi,\overline{t}) - Q_{\mathrm{cut}}\right]\,.$$

⇒ Generate emissions in jet regime only

$$(Q_{ab} < Q_{
m cut} ext{ is not present)}$$

But these emissions are dealt with by higher order ME's
 Reject complete event.

(Simple to see: This is the Sudakov rejection of original method)

The algorithm in a nutshell

- Select parton level event (ME: flavours, colours, momenta) according to corresponding (partial) cross section
- Cluster backwards with "inverted" shower (kinematics): yields $\{t, \xi, \phi\}$ of "hard nodes" (branching kinematics)

(Implementation of non-QCD splitting functions helps)

- Reweight with ratios $\alpha_s(\mu_{\text{node}})/\alpha_s(\mu_{\text{ME}})$ (QCD emissions)
- Start shower at highest scale, run truncated showers until scale of next hardest emission node. Reject event if new jet was produced
- Insert next node and repeat
- ullet Obviously: If Q=t, then truncated shower not necessary

This is essentially L.Lonnblad, JHEP 0205 (2002) 046 for FS dipole showers.

Note: This procedure is independent of both shower and jet measure

ME & PS: Theoretical uncertainties

Uncertainties related to ME-PS merging

- Choice of parton shower implementation
- Choice of the jet criterion k_T-measure, soft eikonal, ...
- ullet Value of the phase-space separation cut, $Q_{
 m cut}$
- ullet Maximum number of jets from hard MEs, $N_{
 m max}$

Uncertainties related to pQCD methods

- Scale uncertainties from MEs
- Scale uncertainties from PSs
- PDF uncertainties

Two implementations currently available

- SHERPA uses truncated CS-shower for initial and final state
- HERWIG++ uses truncated angular ordered shower for final state

Results (DY @ Tevatron): Total cross sections

Consequence of the method:

 Cross section unaltered to LO accuracy

(due to unitarity of PS simulation)

- \rightarrow can employ this to cross-check simulation
- Variation of Q_{cut} and/or N_{max} should not affect σ_{tot} too much

Results (DY Tevatron): Jet multiplicity

 Jet rates and -spectra improved compared to pure PS simulation

(due to usage of HO real ME's)

 Note: minor corrections to total cross section might still have big effect on rare events!

Results (DY Tevatron): Jet spectra

Data from Data: PRL100(2008)102001

Consequence of the method:

- Radiation pattern unaltered to PS accuracy
- Variation of Q_{cut} should not affect distributions too much

(But Q_{CUT} must be in range where PS approximation is valid !)

Truncated shower disabled

arXiv:0905.3072

Forthcoming attractions in SHERPA, v.1.2.0

(All results above with SHERPA v.1.2.0)

- Including new ME generator COMIX:
 - Will allow for significantly higher multiplicities: $pp \to V + (\le 6)j$, $Q\bar{Q} + (\le 6)j$, $(\le 6)j$ quite painless,

(even more feasible - but painful due to integration)

- No more libraries written out, compiled and linked.
- Including new Catani-Seymour shower

(+ merging, of course);

Automated Catani-Seymour subtraction

(generic interface, massive dipoles work in progress).

Automated decay chains for all heavy particles

(up to now only user-defined decay chains feasible);

COMIX - a new matrix element generator for Sherpa

T.Gleisberg & S.Hoeche, JHEP 0812 (2008) 039

- Colour-dressed Berends-Giele amplitudes in the SM
- Fully recursive phase space generation
- Example results (cross sections):

gg → ng	Cross section [pb]							
n	8	9	10	11	12			
\sqrt{s} [GeV]	1500	2000	2500	3500	5000			
Comix	0.755(3)	0.305(2)	0.101(7)	0.057(5)	0.019(2)			
Maltoni (2002)	0.70(4)	0.30(2)	0.097(6)					
Alpgen	0.719(19)	, ,	, ,					

σ [μb]	Number of jets									
$b\bar{b}$ + QCD jets	0	1	2	3	4	5	6			
Comix	470.8(5)	8.83(2)	1.826(8)	0.459(2)	0.1500(8)	0.0544(6)	0.023(2)			
ALPGEN	470.6(6)	8.83(1)	1.822(9)	0.459(2)	0.150(2)	0.053(1)	0.0215(8)			
AMEGIC++	470.3(4)	8.84(2)	1.817(6)							

COMIX - a new matrix element generator for Sherpa

T.Gleisberg & S.Hoeche, JHEP 0812 (2008) 039

- Colour-dressed Berends-Giele amplitudes in the SM
- Fully recursive phase space generation
- Example results (phase space performance):

Using Catani-Seymour splitting kernels

First discussed in: Z.Nagy and D.E.Soper, JHEP **0510** (2005) 024; Implemented by M.Dinsdale, M.Ternick, S.Weinzierl Phys.Rev.**D76** (2007) 094003, and S.Schumann& F.K., JHEP **0803** (2008) 038.

- Catani-Seymour dipole subtraction terms as universal framework for QCD NLO calculations.
- Factorisation formulae for real emission process:
 Full phase space coverage & good approx. to ME.
- Added benefit: All particles always on-shell

Matching/merging with ME improved.

Results in e^+e^- collisions at LEP1

S.Schumann& F.K., JHEP 0803 (2008) 038.

CS-Shower: Results in $p\bar{p}$ collisions S.Schumann& F.K., JHEP 0803 (2008) 038. Δφ_{diet} distribution @ Tevatron Run II Dijet invariant mass @ Tevatron Run I 75 < p_{true} < 100 GeV 100 < p_{Door} < 130 GeV (x20) D0 99 CS show. + Py 6.2 had. 30 < p_{Draw} < 180 GeV (x400) cuts: $l\eta J < 1.0$ $R_{_{11}} > 0.7$ 1e-04 1e-06 le-07 1e-08 M_{dijet} [GeV] $\Delta\phi_{\text{dijet}}$ (rad)

CS-Shower: Results in $p\bar{p}$ collisions S.Schumann& F.K., JHEP 0803 (2008) 038. normalised distribution of η_a @ Tevatron Run I normalised distribution of α @ Tevatron Run I 0.06 CDF 94 (detector level) CDF 94 (detector level) CS show. + Py 6.2 had. CS show, + Pv 6.2 had, 0.05 $\Delta R_{,i} > 0.7$, $|\eta_{,i}|$, $|\eta_{,i}| < 0.7$ $\Delta R_{ii} > 0.7$, $|\eta_i|$, $|\eta_i| < 0.7$ 0.06 $|\phi_1 - \phi_2| > 2.79 \text{ rad}$ $|\phi_1 - \phi_2| > 2.79 \text{ rad}$ E_{P1} > 110 GeV, E_{P3} > 10 GeV - $E_{_{71}} > 110 \; GeV, E_{_{73}} > 10 \; GeV$ 0.04 1/o do/dn₃ 1/o do/da $1.1 < \Delta R_{\gamma\gamma} < \pi$ 0.02 0.02 0.01 -π/4 α $\pi/4$ η̈́3