T' as a Family Symmetry at the GUT and EW Scales

Mu-Chun Chen
University of California at Irvine

Based on work done in collaboration with K.T. Mahanthappa, arXiv:0904.1721; PLB652 (2007) 34 with K.T. Mahanthappa, F.Yu, arXiv:0907.3963

Introduction

Experimental measurements for neutrino oscillation parameters
 ⇒ Tri-bimaximal neutrino mixing:

$$U_{\text{TBM}} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -\sqrt{1/6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -\sqrt{1/6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix} \qquad \begin{aligned} &\sin^2 \theta_{\text{atm, TBM}} = 1/2 \\ &\sin^2 \theta_{\odot, \text{TBM}} = 1/3 \\ &\sin \theta_{13, \text{TBM}} = 0. \end{aligned}$$

- TBM neutrino mixing can arise from underlying A4 family symmetry
 - even permutations of four objects

$$S: (1234) \rightarrow (4321)$$
 $T: (1234) \rightarrow (2314)$

- geometrically -- invariant group of tetrahedron
- does NOT give rise to CKM mixing: $V_{ckm} = I$
- all CG coefficients real

T' Group Theory

- Double covering of tetrahedral group A4:
 - in-equivalent representations of T':

A4: 1, 1', 1", 3 \longrightarrow |TBM for neutrinos other: 2, 2', 2" \longrightarrow 2 +1 assignments for quarks

complex CG coefficients in T'

complexity cannot be avoided by different basis choice

spinorial x spinorial ⊃ vector:

$$2\otimes 2=2'\otimes 2''=2''\otimes 2'=3\oplus 1$$

$$2 \otimes 2 = 2' \otimes 2'' = 2'' \otimes 2' = 3 \oplus 1 \qquad 3 = \begin{pmatrix} \left(\frac{1-i}{2}\right) \left(\alpha_1 \beta_2 + \alpha_2 \beta_1\right) \\ i\alpha_1 \beta_1 \\ \alpha_2 \beta_2 \end{pmatrix}$$

spinorial x vector \supset spinorial:

$$2 \otimes 3 = 2 \oplus 2' \oplus 2'' \qquad 2 = \begin{pmatrix} (1+i)\alpha_2\beta_2 + \alpha_1\beta_1 \\ (1-i)\alpha_1\beta_3 - \alpha_2\beta_1 \end{pmatrix}$$

- ⇒ group theoretical origin of CP violation M.-C.C, K.T. Mahanthappa, arXiv:0904.1721
 - real Yukawa coupling constants
 - real VEVs of scalar fields

The Model

M.-C.C, K.T. Mahanthappa, PLB652 (2007) 34

- Symmetry: SU(5) x T'
- Particle Content: $10(Q, u^c, e^c)_L$ $\overline{5}(d^c, \ell)_L$

	T_3	T_a	\overline{F}	H_5	$H'_{\overline{5}}$	Δ_{45}	ϕ	ϕ'	ψ	ψ'	ζ	N	ξ	η
SU(5)	10	10	$\overline{5}$	5	$\overline{5}$	45	1	1	1	1	1	1	1	1
(d)T	1	2	3	1	1	1'	3	3	2'	2	1"	1'	3	1
Z_{12}	ω^5	ω^2	ω^5	ω^2	ω^2	ω^5	ω^3	ω^2	ω^6	ω^9	ω^9	ω^3	ω^{10}	ω^{10}
Z'_{12}	ω	ω^4	ω^8	ω^{10}	ω^{10}	ω^3	ω^3	ω^6	ω^7	ω^8	ω^2	ω^{11}	1	1

$$\omega = e^{i\pi/6}.$$

Lagrangian: only 9 operators allowed!!

$$\mathcal{L}_{\text{Yuk}} = \mathcal{L}_{\text{TT}} + \mathcal{L}_{\text{TF}} + \mathcal{L}_{\text{FF}}$$

$$\mathcal{L}_{\text{TT}} = y_t H_5 T_3 T_3 + \frac{1}{\Lambda^2} y_{ts} H_5 T_3 T_a \psi \zeta + \frac{1}{\Lambda^2} y_c H_5 T_a T_a \phi^2 + \frac{1}{\Lambda^3} y_u H_5 T_a T_a \phi'^3$$

$$\mathcal{L}_{\text{TF}} = \frac{1}{\Lambda^2} y_b H_5' \overline{F} T_3 \phi \zeta + \frac{1}{\Lambda^3} \left[y_s \Delta_{45} \overline{F} T_a \phi \psi N + y_d H_5' \overline{F} T_a \phi^2 \psi' \right]$$

$$\mathcal{L}_{\text{FF}} = \frac{1}{M_x \Lambda} \left[\lambda_1 H_5 H_5 \overline{F} \overline{F} \xi + \lambda_2 H_5 H_5 \overline{F} \overline{F} \eta \right],$$

Neutrino Sector

- Operators: $\mathcal{L}_{\mathrm{FF}} = \frac{1}{M_{\sim}\Lambda} \left[\lambda_1 H_5 H_5 \overline{F} \, \overline{F} \xi + \lambda_2 H_5 H_5 \overline{F} \, \overline{F} \eta \right]$
- Symmetry breaking:

$$\langle \xi \rangle = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \xi_0 \Lambda$$
 $T' - \text{invariant: } \langle \eta \rangle = u_0 \Lambda$

Resulting mass matrix:

$$M_{\nu} = \begin{pmatrix} 2\xi_0 + u_0 & -\xi_0 & -\xi_0 \\ -\xi_0 & 2\xi_0 & -\xi_0 + u_0 \\ -\xi_0 & -\xi_0 + u_0 & 2\xi_0 \end{pmatrix} \frac{\lambda v^2}{M_x}$$

$$U_{\text{\tiny TBM}}^T M_{\nu} U_{\text{\tiny TBM}} = \text{diag}(u_0 + 3\xi_0, u_0, -u_0 + 3\xi_0) \frac{v_u^2}{M_X}$$

Form diagonalizable:

- -- no adjustable parameters
- -- neutrino mixing from CG coefficients!

only vector representations involved

- ⇒ all CG are real
- \Rightarrow Majorana phases either 0 or π

$$U_{\text{\tiny TBM}}^T M_{\nu} U_{\text{\tiny TBM}} \ = \ \text{diag}(u_0 + 3\xi_0, u_0, -u_0 + 3\xi_0) \frac{v_u^2}{M_X} \qquad U_{\text{\tiny TBM}} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -\sqrt{1/6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -\sqrt{1/6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$$

Charged Fermion Sector

- **Operators:** $\mathcal{L}_{\text{TT}} = y_t H_5 T_3 T_3 + \frac{1}{\Lambda^2} y_{ts} H_5 T_3 T_a \psi \zeta + \frac{1}{\Lambda^2} y_c H_5 T_a T_a \phi^2 + \frac{1}{\Lambda^3} y_u H_5 T_a T_a \phi'^3$ $\mathcal{L}_{\mathrm{TF}} = \frac{1}{\Lambda^2} y_b H_{\overline{5}}' \overline{F} T_3 \phi \zeta + \frac{1}{\Lambda^3} \left[y_s \Delta_{45} \overline{F} T_a \phi \psi N + y_d H_{\overline{5}}' \overline{F} T_a \phi^2 \psi' \right]$
- top mass: allowed by T'; lighter family masses at higher dimensionalities
- symmetry breaking:

$$\langle \phi \rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \phi_0 \Lambda , \ \langle \psi \rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \psi_0 \Lambda \qquad \langle \phi' \rangle = \phi'_0 \Lambda \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \qquad \langle \psi' \rangle = \psi'_0 \Lambda \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Mass matrices:

$$M_{u} = \begin{pmatrix} i\phi_{0}^{\prime 3} & \frac{1-i}{2}\phi_{0}^{\prime 3} & 0\\ \frac{1-i}{2}\phi_{0}^{\prime 3} & \phi_{0}^{\prime 3} + (1-\frac{i}{2})\phi_{0}^{2} & y^{\prime}\psi_{0}\zeta_{0}\\ 0 & y^{\prime}\psi_{0}\zeta_{0} & 1 \end{pmatrix} y_{t}v_{u}$$

$$\Rightarrow \text{CPV in quark \& lepton sectors}$$

$$M_d = \begin{pmatrix} 0 & (1+i)\phi_0\psi_0' & 0 \\ -(1-i)\phi_0\psi_0' & \psi_0N_0 & 0 \\ \phi_0\psi_0' & \phi_0\psi_0' & \zeta_0 \end{pmatrix} y_b v_d \phi_0, \qquad M_e = \begin{pmatrix} 0 & -(1-i)\phi_0\psi_0' & \phi_0\psi_0' \\ (1+i)\phi_0\psi_0' & -3\psi_0N_0 & \phi_0\psi_0' \\ 0 & 0 & \zeta_0 \end{pmatrix} y_b v_d \phi_0$$

both vector and spinorial reps involved

$$M_e = \begin{pmatrix} 0 & -(1-i)\phi_0\psi_0' & \phi_0\psi_0' \\ (1+i)\phi_0\psi_0' & -3\psi_0N_0 & \phi_0\psi_0' \\ 0 & 0 & \zeta_0 \end{pmatrix} y_b v_d \phi_0$$

Georgi-Jarlskog relations ⇒ corrections to TBM pattern

Quark and Lepton Mixing Matrices

CKM mixing matrix:

$$M_{u} = \begin{pmatrix} i\phi_{0}'^{3} & \frac{1-i}{2}\phi_{0}'^{3} & 0 \\ \frac{1-i}{2}\phi_{0}'^{3} & \phi_{0}'^{3} + (1-\frac{i}{2})\phi_{0}^{2} & y'\psi_{0}\zeta_{0} \end{pmatrix} y_{t}v_{u} \qquad M_{d} = \begin{pmatrix} 0 & (1+i)\phi_{0}\psi_{0}' & 0 \\ -(1-i)\phi_{0}\psi_{0}' & \psi_{0}N_{0} & 0 \\ \phi_{0}\psi_{0}' & \phi_{0}\psi_{0}' & \zeta_{0} \end{pmatrix} y_{b}v_{d}\phi_{0},$$

$$V_{cb}$$

$$V_{ub}$$

$$\theta_c \simeq \left| \sqrt{m_d/m_s} - e^{i\alpha} \sqrt{m_u/m_c} \right| \sim \sqrt{m_d/m_s},$$

MNS matrix:

$$\theta_{12}^e \simeq \sqrt{\frac{m_e}{m_\mu}} \simeq \frac{1}{3} \sqrt{\frac{m_d}{m_s}} \sim \frac{1}{3} \theta_c$$

 \Rightarrow corrections to TBM related to θ_c

Georgi-larlskog relations $\Rightarrow V_{d,L} \neq I$

 $SU(5) \Rightarrow M_d = (M_e)^T$

$$U_{\text{MNS}} = V_{e,L}^{\dagger} U_{\text{TBM}} = \begin{pmatrix} 1 & -\theta_c/3 & * \\ \theta_c/3 & 1 & * \\ * & * & 1 \end{pmatrix} \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -\sqrt{1/6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -\sqrt{1/6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$$

$$\tan^2 \theta_{\odot} \simeq \tan^2 \theta_{\odot,TBM} + \frac{1}{2} \theta_c \cos \delta$$

$$\theta_{13} \simeq \theta_c/3\sqrt{2}$$

leptonic Dirac CP phase

Predictions

quark sector:

charged fermion sector: 7 parameters

$$m_u: m_c: m_t = \theta_c^{7.5}: \theta_c^{3.7}: 1 \qquad m_d: m_s: m_b = \theta_c^{4.6}: \theta_c^{2.7}: 1$$

$$m_d: m_s: m_b = \theta_c^{4.6}: \theta_c^{2.7}: 1$$

CKM mixing angles & CPV measures

$$|V_{CKM}| = \begin{pmatrix} 0.974 & 0.227 & 0.00412 \\ 0.227 & 0.973 & 0.0412 \\ 0.00718 & 0.0408 & 0.999 \end{pmatrix} \qquad \alpha \equiv \arg\left(\frac{-V_{cd}V_{cb}}{V_{td}V_{tb}^*}\right) = 23.6^{\circ}$$

$$\beta \equiv \arg\left(\frac{-V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right) = 23.6^{\circ}, \ \sin 2\beta = 0.734 \ ,$$

$$\alpha \equiv \arg\left(\frac{-V_{td}V_{tb}^*}{V_{td}V_{tb}^*}\right) = 110^{\circ} \ ,$$

$$\gamma \equiv \arg\left(\frac{-V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right) = \delta_q = 45.6^o ,$$

Neutrino sector

$$J \equiv \text{Im}(V_{ud}V_{cb}V_{ub}^*V_{cs}^*) = 2.69 \times 10^{-5} ,$$

$$\sin^2 2\theta_{atm} = 1$$
, $\tan^2 \theta_{\odot} = 0.419$, $|U_{e3}| = 0.0583$
 $|m_1| = 0.0156 \text{ eV}$, $|m_2| = 0.0179 \text{ eV}$, $|m_3| = 0.0514 \text{ eV}$

2 parameters in neutrino sector

Majorana phases $\alpha_{21}=\pi$ $\alpha_{31}=0$

prediction for Dirac CP phase: δ = 227 degrees $J_{\ell} = -0.00967$

$$J_{\ell} = -0.00967$$

⇒ connection between leptogenesis & CPV in neutrino oscillation

Flavor Violation in RS

Two sources of flavor violation in RS:

$$\mathcal{L}_{5D} \supset \overline{\Psi} C_{\Psi} \Psi + \overline{\psi_u} C_{\psi_u} \psi_u + \overline{\psi_d} C_{\psi_d} \psi_d + H \, \overline{\Psi} \lambda_U \psi_u + \overline{H} \, \overline{\Psi} \lambda_D \psi_d$$

- 5D Yukawa coupling constants
- 5D bulk mass terms

generically independent

• gauge-fermion couplings in fermion mass eigenstates:

$$\sum_{n} G^{n} (\Psi^{0\dagger} V^{\dagger} f_{\Psi^{0}}^{2} V \Psi^{0} + \psi_{u}^{0\dagger} W_{u}^{\dagger} f_{\psi_{u}^{0}}^{2} W_{u} \psi_{u}^{0} + \psi_{d}^{0\dagger} W_{d}^{\dagger} f_{\psi_{d}^{0}}^{2} W_{d} \psi_{d}^{0})$$

- non-universal bulk mass terms ⇒ tree-level FCNCs
- quark sector:
 - most stringent constraint from 1st & 2nd generations
- lepton sector:
 - presence even in the limit of massless neutrinos
 - $\mu \rightarrow 3$ e, μ -e conversion
- Generally: FCNC constraints $\Rightarrow \Lambda > O(10) \text{ TeV}$

Neutrino Mass Spectrum & Mixing

- Minimal Flavor Violation
 - RS Quark sector: Fitzpatrick, Perez, Randall, 2007

$$C_{u,d} = Y_{u,d}^{\dagger} Y_{u,d}$$
 $C_Q = r Y_u Y_u^{\dagger} + Y_d Y_d^{\dagger}$

• RS Lepton sector:

M.-C. C, H.B.Yu, PLB 2008

$$C_e = aY_e^{\dagger}Y_e, \quad C_N = dY_{\nu}^{\dagger}Y_{\nu}, \quad C_L = c(\xi Y_{\nu}Y_{\nu}^{\dagger} + Y_eY_e^{\dagger})$$

mild hierarchy among 5D parameters: tuning needed for large neutrino mixing

generic anarchy case: $V_{ij} \sim f_{L_i}/f_{L_j}$

large atm & solar mixing angles: $f_{L_1}/f_{L_2} \sim 1 \text{ and } f_{L_2}/f_{L_3} \sim 1.$

- MFV with $\xi=0,$ f_{L_i}/f_{L_j} is fixed by $\sqrt{m_i/m_j}$ $f_{L_1}/f_{L_2} \simeq 0.07$ $f_{L_2}/f_{L_3} \simeq 0.24.$
 - some structure in 5D Yukawa needed to accommodate mixing angles and mass ratios simultaneously

T' Family Symmetry as a Solution

M.-C.C., K.T. Mahanthappa, F.Yu, arXiv:0907.3963

- Family Symmetry based on double tetrahedral group, T':
 - TBM neutrino mixing
 - \Rightarrow 3 families of lepton doublets transform as 3
 - ⇒ common bulk mass term for all lepton doublets
 - ⇒ absence of tree-level FCNCs
 - ⇒ neutrino mixing from CG coefficients (decouple from masses)
 - ⇒ alleviate tuning in Yukawa couplings
 - Realistic quark masses & mixing
 - \Rightarrow 3 families of quarks transform as (1+2)
 - ⇒ common bulk mass term for 1st & 2nd generations of quarks
 - ⇒ absence of FCNCs in 1st & 2nd generations