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Introduction

• Experimental measurements for neutrino oscillation parameters 
⇒ Tri-bimaximal neutrino mixing:

• TBM neutrino mixing can arise from underlying A4 family 
symmetry

• even permutations of four objects

S: (1234) → (4321)      T: (1234) → (2314)

• geometrically -- invariant group of tetrahedron

• does NOT give rise to CKM mixing:    Vckm = 1

• all CG coefficients real 

I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2σ

limits for the mixing parameters [1],

sin2 θ12 = 0.30 (0.25− 0.34), sin2 θ23 = 0.5 (0.38− 0.64), sin2 θ13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],
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which predicts sin2 θatm, TBM = 1/2 and sin θ13,TBM = 0. In addition, it predicts sin2 θ!,TBM = 1/3

for the solar mixing angle. Even though the predicted θ!,TBM is currently still allowed by the

experimental data at 2σ, as it is very close to the upper bound at the 2σ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1′, 1′′ and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a different finite group, the double tetrahedral group, (d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition, (d)T has three in-equivalent

doublets, 2, 2′, and 2′′, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing (d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⊕ 1 representation assignments under (d)T , and the

prediction for the solar mixing angle is ∼ 10−3, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the (d)T to
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T´ Group Theory

• Double covering of tetrahedral group A4:

• in-equivalent representations of T’: 

★ complex CG coefficients in T′           

• spinorial x spinorial ⊃ vector:

• spinorial x vector ⊃ spinorial:

⇒ group theoretical origin of CP violation

• real Yukawa coupling constants

• real VEVs of scalar fields
3

A4:  1,  1′,  1″, 3
other:   2,  2′,  2″

TBM for neutrinos

2 +1 assignments for quarks

complexity cannot be avoided 
by different basis choice

2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1
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The Model

• Symmetry: SU(5) x T´

• Particle Content:

• Lagrangian:  only 9 operators allowed!!The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH
′
5FT3φζ +

1
Λ3

[
ys∆45FTaφψN + ydH

′
5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′
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


, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

4

T3 Ta F H5 H ′
5

∆45 φ φ′ ψ ψ′ ζ N ξ η

SU(5) 10 10 5 5 5 45 1 1 1 1 1 1 1 1
(d)T 1 2 3 1 1 1′ 3 3 2′ 2 1′′ 1′ 3 1

Z12 ω5 ω2 ω5 ω2 ω2 ω5 ω3 ω2 ω6 ω9 ω9 ω3 ω10 ω10

Z ′
12 ω ω4 ω8 ω10 ω10 ω3 ω3 ω6 ω7 ω8 ω2 ω11 1 1

TABLE I: Charge assignments. Here the parameter ω = eiπ/6.

in [9] generalizes the (d)T to the quark sector while maintaining near TBM pattern. However,

in order to explain the mass hierarchy, the model has to resort to an additional U(1) symmetry.

Furthermore, a large number of operators are present in this model, making it less predictive. Here

we consider an SU(5) model combined with (d)T symmetry, which successfully accommodates the

mass hierarchy as well as the mixing matrices in both quark and lepton sectors. With an additional

Z12 × Z ′
12 symmetry, only “good” operators are allowed up to at least dimension seven, making

the model very predictive. In addition, the mass hierarchy is naturally explained without having

hierarchy in the vacuum expectation values (VEV’s) of the scalar fields, the reason being that the

mass operators for the lighter generation are allowed to appear only at higher order compared to

those for the heavy generation. Thus we have a dynamical explanation for the mass hierarchy.

II. THE MODEL

In SU(5), all matter fields are unified into a 10(Q, uc, ec)L and a 5(dc, ')L dimensional repre-

sentations. The three generations of 5 are assigned into a triplet of (d)T , in order to generate the

tri-bimaximal mixing pattern in the lepton sector, and it is denoted by F . On the other hand,

to obtain realistic quark sector, the third generation of the 10-dim representation transforms as a

singlet, so that the top quark mass is allowed by the family symmetry, while the first and the sec-

ond generations form a doublet of (d)T . These 10-dim representations are denoted by, respectively,

T3 and Ta, where a = 1, 2. The Yukawa interactions are mediated by a 5-dim Higgs, H5, a 5-dim

Higgs, H ′
5
, as well as a 45-dim Higgs, ∆45, which is required for the Georgi-Jarlskog relations. We

have summarized these quantum number assignment in Table I. It is to be noted that H5 and H ′
5

are not conjugate of each other as they have different Z12 and Z ′
12 charges.
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Neutrino Sector

• Operators:

• Symmetry breaking:

• Resulting mass matrix:

The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2σ

limits for the mixing parameters [1],

sin2 θ12 = 0.30 (0.25− 0.34), sin2 θ23 = 0.5 (0.38− 0.64), sin2 θ13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],

UTBM =





√
2/3 1/

√
3 0

−
√

1/6 1/
√

3 −1/
√

2

−
√

1/6 1/
√

3 1/
√

2




, (2)

which predicts sin2 θatm, TBM = 1/2 and sin θ13,TBM = 0. In addition, it predicts sin2 θ!,TBM = 1/3

for the solar mixing angle. Even though the predicted θ!,TBM is currently still allowed by the

experimental data at 2σ, as it is very close to the upper bound at the 2σ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1′, 1′′ and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a different finite group, the double tetrahedral group, (d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition, (d)T has three in-equivalent

doublets, 2, 2′, and 2′′, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing (d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⊕ 1 representation assignments under (d)T , and the

prediction for the solar mixing angle is ∼ 10−3, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the (d)T to

2

5

2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





2⊗ 3 = 2⊕ 2′ ⊕ 2′′

2 =
(

(1 + i)α2β2 + α1β1

(1− i)α1β3 − α2β1

)

VCKM =

T ′ → GTST 2 :

T ′ − invariant:

T ′ → GT :

T ′ → nothing:

T ′ → GS :

1

only vector representations involved
⇒ all CG are real

⇒ Majorana phases either 0 or π 

2

T3 Ta F H5 H ′
5 ∆45 φ φ′ ψ ψ′ ζ N ξ η

SU(5) 10 10 5 5 5 45 1 1 1 1 1 1 1 1
(d)T 1 2 3 1 1 1′ 3 3 2′ 2 1′′ 1′ 3 1

Z12 ω5 ω2 ω5 ω2 ω2 ω5 ω3 ω2 ω6 ω9 ω9 ω3 ω10 ω10

Z′
12 ω ω4 ω8 ω10 ω10 ω3 ω3 ω6 ω7 ω8 ω2 ω11 1 1

TABLE I: Field content of our model. The Z12 charges are
given in terms of the parameter ω = eiπ/6.

gauge anomalies automatically [12, 13]. In addition to
the SU(5)×T ′ symmetry, we further impose a Z12×Z ′

12

symmetry. Due to the Z12×Z ′
12 symmetry, only nine op-

erators are allowed in our model up to mass dimension-7
in the Yukawa sector. The discrete symmetries of our
model allow the lighter generation masses to arise only
at higher mass dimensionality, and thus providing a dy-
namical origin of the mass hierarchy.

The Lagrangian of the Yukawa sector of the model is
given by,

LYuk = LTT + LTF + LFF + h.c. , (3)

−LTT = ytH5T3T3 +
1

Λ2
H5

[

ytsT3Taψζ

+ycTaTbφ
2

]

+
1

Λ3
yuH5TaTbφ

′3 , (4)

−LTF =
1

Λ2
ybH

′
5
FT3φζ +

1

Λ3

[

ys∆45FTaφψN

+ydH5
′FTaφ

2ψ′

]

, (5)

−LFF =
1

ΛMX

[

λ1H5H5FF ξ + λ2H5H5FFη

]

, (6)

which is invariant under SU(5) × T ′ and it is CP non-
invariant. Here the parameter Λ is the cutoff scale of
the T ′ symmetry while MX is the scale where lepton
number violating operators are generated. Note that all
Yukawa coupling constants, yx, in the Lagrangian are
real parameters. The T ′ flavon fields acquire vacuum
expectation values along the following direction,

〈ξ〉 =





1
1
1



 ξ0Λ , 〈φ′〉 =





1
1
1



 φ′
0Λ , (7)

〈φ〉 =





0
0
1



φ0Λ , 〈ψ〉 =

(

1
0

)

ψ′
0Λ , (8)

〈ψ′〉 =

(

1
1

)

ψ′
0Λ , (9)

〈ζ〉 = ζ0Λ , 〈N〉 = N0Λ , 〈η〉 = u0Λ . (10)

Note that all the expectation values are real.
In terms of the T ′ and SU(5) component fields, the

above Lagrangian gives the following Yukawa interactions

for the charged fermions in the weak charged current in-
teraction eigenstates,

− LYuk ⊃ UR,i(Mu)ijQL,j + DR,i(Md)ijQL,j

+ER,i(Me)ij'L,j + h.c. , (11)

where QL denotes the quark doublets while UR and DR

denotes the iso-singet up- and down-type quarks, with
i and j being the generation indices. Similarly, 'L and
ER denote the iso-doublet and singlet charged leptons,
respectively. The matrices Mu, Md and Me, upon the
breaking of T ′ and the electroweak symmetry, are given
in terms of seven parameters by

Mu =







iφ′3
0 (1−i

2
)φ′3

0 0

(1−i
2

)φ′3
0 φ′3

0 + (1 − i
2
)φ2

0 y′ψ0ζ0

0 y′ψ0ζ0 1






ytvu, (12)

Md =







0 (1 + i)φ0ψ′
0 0

−(1 − i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0






ydvdφ0 , (13)

Me =







0 −(1 − i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0






ydvdφ0 ,

(14)

which manifest the SU(5) relation, Md = MT
e , except for

the factor of −3 in the (22) entry of Me, due to the SU(5)
CG coefficient through the coupling to ∆45. In addition
to this −3 factor, the Georgi-Jarlskog (GJ) relations also
require Me,d being non-diagonal, leading to corrections to
the TBM pattern [9]. Note that the complex coefficients
in the above mass matrices arise entirely from the CG
coefficients of the T ′ group theory. More precisely, these
complex CG coefficients appear in couplings that involve
the doublet representations of T ′.

The mass matrices Mu,d are diagonalized by,

V †
u,RMuVu,L = diag(mu, mc, mt) and V †

d,RMdVd,L =
diag(md, ms, mb), where the mass eigenvalues on the
right-hand side of the equations are real and positive.
This gives the following weak charged current interaction
in the mass eigenstates of the fermions,

Lcc =
g

2
√

2

[

Wµ
+((x, t)J−

µ ((x, t) + Wµ
−((x, t)J+

µ ((x, t)

]

,

J−
µ = (u′, c′, t

′
)LγµVCKM







d′

s′

b′







L

. (15)

The complex mass matrices Mu,d lead to a complex quark

mixing matrix, VCKM = V †
u,LVd,L.

The interactions in LFF lead to the following neutrino
mass matrix,

Mν =







2ξ0 + u0 −ξ0 −ξ0

−ξ0 2ξ0 −ξ0 + u0

−ξ0 −ξ0 + u0 2ξ0







λv2

Mx
, (16)
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Z12 ω5 ω2 ω5 ω2 ω2 ω5 ω3 ω2 ω6 ω9 ω9 ω3 ω10 ω10

Z′
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TABLE I: Field content of our model. The Z12 charges are
given in terms of the parameter ω = eiπ/6.

gauge anomalies automatically [12, 13]. In addition to
the SU(5)×T ′ symmetry, we further impose a Z12×Z ′

12

symmetry. Due to the Z12×Z ′
12 symmetry, only nine op-

erators are allowed in our model up to mass dimension-7
in the Yukawa sector. The discrete symmetries of our
model allow the lighter generation masses to arise only
at higher mass dimensionality, and thus providing a dy-
namical origin of the mass hierarchy.

The Lagrangian of the Yukawa sector of the model is
given by,

LYuk = LTT + LTF + LFF + h.c. , (3)

−LTT = ytH5T3T3 +
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+
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[
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2ψ′
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−LFF =
1

ΛMX

[

λ1H5H5FF ξ + λ2H5H5FFη

]

, (6)

which is invariant under SU(5) × T ′ and it is CP non-
invariant. Here the parameter Λ is the cutoff scale of
the T ′ symmetry while MX is the scale where lepton
number violating operators are generated. Note that all
Yukawa coupling constants, yx, in the Lagrangian are
real parameters. The T ′ flavon fields acquire vacuum
expectation values along the following direction,

〈ξ〉 =





1
1
1



 ξ0Λ , 〈φ′〉 =





1
1
1



 φ′
0Λ , (7)

〈φ〉 =
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0
0
1



φ0Λ , 〈ψ〉 =

(

1
0

)

ψ′
0Λ , (8)

〈ψ′〉 =

(

1
1

)

ψ′
0Λ , (9)

〈ζ〉 = ζ0Λ , 〈N〉 = N0Λ , 〈η〉 = u0Λ . (10)

Note that all the expectation values are real.
In terms of the T ′ and SU(5) component fields, the

above Lagrangian gives the following Yukawa interactions

for the charged fermions in the weak charged current in-
teraction eigenstates,

− LYuk ⊃ UR,i(Mu)ijQL,j + DR,i(Md)ijQL,j

+ER,i(Me)ij'L,j + h.c. , (11)

where QL denotes the quark doublets while UR and DR

denotes the iso-singet up- and down-type quarks, with
i and j being the generation indices. Similarly, 'L and
ER denote the iso-doublet and singlet charged leptons,
respectively. The matrices Mu, Md and Me, upon the
breaking of T ′ and the electroweak symmetry, are given
in terms of seven parameters by

Mu =







iφ′3
0 (1−i

2
)φ′3

0 0

(1−i
2

)φ′3
0 φ′3

0 + (1 − i
2
)φ2

0 y′ψ0ζ0

0 y′ψ0ζ0 1






ytvu, (12)

Md =







0 (1 + i)φ0ψ′
0 0

−(1 − i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0






ydvdφ0 , (13)

Me =







0 −(1 − i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0






ydvdφ0 ,

(14)

which manifest the SU(5) relation, Md = MT
e , except for

the factor of −3 in the (22) entry of Me, due to the SU(5)
CG coefficient through the coupling to ∆45. In addition
to this −3 factor, the Georgi-Jarlskog (GJ) relations also
require Me,d being non-diagonal, leading to corrections to
the TBM pattern [9]. Note that the complex coefficients
in the above mass matrices arise entirely from the CG
coefficients of the T ′ group theory. More precisely, these
complex CG coefficients appear in couplings that involve
the doublet representations of T ′.

The mass matrices Mu,d are diagonalized by,

V †
u,RMuVu,L = diag(mu, mc, mt) and V †

d,RMdVd,L =
diag(md, ms, mb), where the mass eigenvalues on the
right-hand side of the equations are real and positive.
This gives the following weak charged current interaction
in the mass eigenstates of the fermions,

Lcc =
g

2
√

2

[

Wµ
+((x, t)J−

µ ((x, t) + Wµ
−((x, t)J+

µ ((x, t)

]

,

J−
µ = (u′, c′, t

′
)LγµVCKM







d′

s′

b′







L

. (15)

The complex mass matrices Mu,d lead to a complex quark

mixing matrix, VCKM = V †
u,LVd,L.

The interactions in LFF lead to the following neutrino
mass matrix,

Mν =







2ξ0 + u0 −ξ0 −ξ0

−ξ0 2ξ0 −ξ0 + u0

−ξ0 −ξ0 + u0 2ξ0







λv2

Mx
, (16)

3

which is parametrized by two parameters, giving the
three absolute neutrino masses [9] (see below). As these
interactions involve only the triplet representations of T ′,
the relevant product rule is 3 ⊗ 3. Consequently, all CG
coefficients are real, leading to a real neutrino Majo-
rana mass matrix. The neutrino mass matrix given in
Eq. 16 has the special property that it is form diagonal-
izable [14], i.e. independent of the values of ξ0 and u0, it
is diagonalized by the tri-bimaximal mixing matrix,

UT
TBM

MνUTBM = diag(u0 + 3ξ0, u0,−u0 + 3ξ0)
v2

u

MX
,

≡ diag(m1, m2, m3) . (17)

While the neutrino mass matrix is real, the complex
charged lepton mass matrix Me, which is diagonalized
by, V †

e,RMeVe,L = diag(me, mµ, mτ ), leads to a complex

VPMNS = V †
e,LUTBM (see below).

CPT Invariance and CP Violation.—Even though the
complexity of the Lagrangian arises in our model through
the complex CG coefficients, the hermiticity of the La-
grangian, which is required in order to have CPT invari-
ance, remains satisfied. This is easily seen using the com-
ponent form given in Eq. 11. Take the term URMuQL

for example. Its corresponding hermitian conjugate is

(URMuQL)† = (U †
Rγ0MuQL)† = QLM †

uUR . (18)

The hermiticity of the Lagrangian allows us to write, in
general,

L(#x, t) = αO(#x, t) + α∗
O

†(#x, t) , (19)

where O(#x, t) is some operator and α is some c-number.
Recall that, the charge conjugation C changes a left-
hande particle into a left-hande anti-particle, while the
parity P turns a left-handed particle into a right-handed
particle, and vice versa. Thus the CP transformation
converts a left-handed particle into a right-handed anti-
particle. Effectively,

O(#x, t)
CP−→ O

†(−#x, t) , α
CP−→ α , (20)

The time reversal operator is antiunitary. It reverses the
momentum of a particle and flips its spin. Effectively,

O(#x, t)
T−→ O(#x,−t) , α

T−→ α∗ , (21)

In the weak eigenstates, the interactions Lcc in Eq. 15 are
invariant under CP and T, as all coupling constants are
real. On the other hand, the Yukawa interactions violate
both CP and T. Using the up-quark sector again as an
example, for each conjugate pair specified by indices i
and j,

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

CP−→ QL,j(Mu)ijUR,i + UR,i(Mu)∗ijQL,j , (22)

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

T−→ UR,i(Mu)∗ijQL,j + QL,j(Mu)ijUR,i , (23)

The complexity of the mass matrix, giving rise to CP and
T violations, ensues from the complex CG coefficients in
T ′. Here we have suppressed the space-time coordinates
the inversions of which under the transformations are as-
sumed implicitly. Due to its hermiticity, the Lagrangian
is CPT invariant,

URMuQL +QLM †
uUR

CPT−→ QLM †
uUR +URMuQL , (24)

Alternatively, in the mass eigenstates, the Yukawa inter-
actions are invariant under CP and T, while the charged
current interactions violate CP and T individually and
are invariant under CPT. Note that CP violation is in-
herent in the Lagrangian Eq.3, which is T ′ and SU(5)
invariant.

Numerical Predictions.—The predicted charged
fermion mass matrices in our model are parametrized in
terms of 7 parameters,

Mu

ytvu
=







ig 1−i
2

g 0
1−i
2

g g + (1 − i
2
)h k

0 k 1






, (25)

Md, MT
e

ybvdφ0ζ0
=







0 (1 + i)b 0

−(1 − i)b (1,−3)c 0

b b 1






, (26)

With b ≡ φ0ψ′
0/ζ0 = 0.0029, c ≡ ψ0N0/ζ0 = −0.0169,

k ≡ y′ψ0ζ0 = −0.029, h ≡ φ2
0 = 0.008 and g ≡ φ′3

0 =
−9 × 10−6, the following mass ratios are obtained, md :
ms : mb & θ4.7

c : θ2.7

c : 1, mu : mc : mt & θ8

c : θ3.2

c : 1,
with θc &

√

md/ms & 0.225. (These ratios in terms
of θc coincide with those give in [15].) We have also
taken yt = 1 and ybφ0ζ0 & mb/mt & 0.011. As a result
of the GJ relations, realistic charged lepton masses are
obtained. Making use of these parameters, the complex
CKM matrix is,







0.975e−i26.8o

0.225ei21.1o

0.00293ei164o

0.224ei124o

0.974e−i8.19o

0.032ei180o

0.00557ei103o

0.0317e−i7.33o

0.999






. (27)

The values for |VCKM | elements are in agreement with
current experimental values. The predictions of our
model for the angles in the unitarity triangle and the
Jarlskog invariant in the quark sector are,

β ≡ arg

(

−VcdV ∗
cb

VtdV ∗
tb

)

= 21.3o, sin 2β = 0.676 , (28)

α ≡ arg

(

−VtdV ∗
tb

VudV ∗
ub

)

= 114o , (29)

γ ≡ arg

(

−VudV ∗
ub

VcdV ∗
cb

)

= δq = 44.9o , (30)

J ≡ Im(VudVcbV
∗
ubV

∗
cs) = 1.45 × 10−5 , (31)

where δq is the CP phase in the standard parametriza-
tion. In terms of the Wolfenstein parameters, we have

Form diagonalizable: 
-- no adjustable parameters
-- neutrino mixing from CG coefficients!
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erators are allowed in our model up to mass dimension-7
in the Yukawa sector. The discrete symmetries of our
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at higher mass dimensionality, and thus providing a dy-
namical origin of the mass hierarchy.

The Lagrangian of the Yukawa sector of the model is
given by,

LYuk = LTT + LTF + LFF + h.c. , (3)

−LTT = ytH5T3T3 +
1
Λ2

H5
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ytsT3Taψζ

+ycTaTbφ
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]
+

1
Λ3

yuH5TaTbφ
′3 , (4)

−LTF =
1
Λ2

ybH
′
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1
Λ3

[
ys∆45FTaφψN

+ydH5
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]
, (5)
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1

ΛMX

[
λ1H5H5FF ξ + λ2H5H5FFη
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, (6)

which is invariant under SU(5) × T ′ and it is CP non-
invariant. Here the parameter Λ is the cutoff scale of
the T ′ symmetry while MX is the scale where lepton
number violating operators are generated. Note that all
Yukawa coupling constants, yx, in the Lagrangian are
real parameters. The T ′ flavon fields acquire vacuum
expectation values along the following direction,

〈ξ〉 =
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
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1
1



 ξ0Λ , 〈φ′〉 =


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1
1
1



 φ′0Λ , (7)

〈φ〉 =




0
0
1



 φ0Λ , 〈ψ〉 =
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1
0

)
ψ0Λ , (8)

〈ψ′〉 =
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1
1

)
ψ′
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Note that all the expectation values are real.
In terms of the T ′ and SU(5) component fields, the

above Lagrangian gives the following Yukawa interactions

for the charged fermions in the weak charged current in-
teraction eigenstates,

−LYuk ⊃ UR,i(Mu)ijQL,j + DR,i(Md)ijQL,j

+ER,i(Me)ij'L,j + h.c. , (11)

where QL denotes the quark doublets while UR and DR

denotes the iso-singet up- and down-type quarks, with
i and j being the generation indices. Similarly, 'L and
ER denote the iso-doublet and singlet charged leptons,
respectively. The matrices Mu, Md and Me, upon the
breaking of T ′ and the electroweak symmetry, are given
in terms of seven parameters by

Mu =




iφ′30 ( 1−i

2 )φ′30 0
( 1−i

2 )φ′30 φ′30 + (1− i
2 )φ2

0 y′ψ0ζ0

0 y′ψ0ζ0 1



 ytvu, (12)

Md =




0 (1 + i)φ0ψ′

0 0
−(1− i)φ0ψ′

0 ψ0N0 0
φ0ψ′

0 φ0ψ′
0 ζ0



 ydvdφ0 , (13)
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
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(14)

which manifest the SU(5) relation, Md = MT
e , except for

the factor of −3 in the (22) entry of Me, due to the SU(5)
CG coefficient through the coupling to ∆45. In addition
to this −3 factor, the Georgi-Jarlskog (GJ) relations also
require Me,d being non-diagonal, leading to corrections to
the TBM pattern [9]. Note that the complex coefficients
in the above mass matrices arise entirely from the CG
coefficients of the T ′ group theory. More precisely, these
complex CG coefficients appear in couplings that involve
the doublet representations of T ′.

The mass matrices Mu,d are diagonalized by,
V †
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d,RMdVd,L =

diag(md,ms,mb), where the mass eigenvalues on the
right-hand side of the equations are real and positive.
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g

2
√

2

[
Wµ

+((x, t)J−
µ ((x, t) + Wµ

−((x, t)J+
µ ((x, t)

]
,

J−
µ = (u′, c′, t′)LγµVCKM




d′

s′

b′





L

. (15)
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Mν =


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−ξ0 2ξ0 −ξ0 + u0

−ξ0 −ξ0 + u0 2ξ0




λv2

Mx
, (16)



Charged Fermion Sector
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fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,
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0
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0
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where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo

7

The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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The correction to the θ12 due to mixing in the charged lepton sector can account for the difference
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operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices
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where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
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breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo
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The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ


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1

1

1




,

〈
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0Λ


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1
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


, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

2

T3 Ta F H5 H ′
5 ∆45 φ φ′ ψ ψ′ ζ N ξ η

SU(5) 10 10 5 5 5 45 1 1 1 1 1 1 1 1
(d)T 1 2 3 1 1 1′ 3 3 2′ 2 1′′ 1′ 3 1

Z12 ω5 ω2 ω5 ω2 ω2 ω5 ω3 ω2 ω6 ω9 ω9 ω3 ω10 ω10

Z′
12 ω ω4 ω8 ω10 ω10 ω3 ω3 ω6 ω7 ω8 ω2 ω11 1 1

TABLE I: Field content of our model. The Z12 charges are
given in terms of the parameter ω = eiπ/6.

gauge anomalies automatically [12, 13]. In addition to
the SU(5)×T ′ symmetry, we further impose a Z12×Z ′

12

symmetry. Due to the Z12×Z ′
12 symmetry, only nine op-

erators are allowed in our model up to mass dimension-7
in the Yukawa sector. The discrete symmetries of our
model allow the lighter generation masses to arise only
at higher mass dimensionality, and thus providing a dy-
namical origin of the mass hierarchy.

The Lagrangian of the Yukawa sector of the model is
given by,

LYuk = LTT + LTF + LFF + h.c. , (3)

−LTT = ytH5T3T3 +
1
Λ2

H5

[
ytsT3Taψζ

+ycTaTbφ
2

]
+

1
Λ3

yuH5TaTbφ
′3 , (4)

−LTF =
1
Λ2

ybH
′
5FT3φζ +

1
Λ3

[
ys∆45FTaφψN

+ydH5
′FTaφ2ψ′

]
, (5)

−LFF =
1

ΛMX

[
λ1H5H5FF ξ + λ2H5H5FFη

]
, (6)

which is invariant under SU(5) × T ′ and it is CP non-
invariant. Here the parameter Λ is the cutoff scale of
the T ′ symmetry while MX is the scale where lepton
number violating operators are generated. Note that all
Yukawa coupling constants, yx, in the Lagrangian are
real parameters. The T ′ flavon fields acquire vacuum
expectation values along the following direction,

〈ξ〉 =




1
1
1



 ξ0Λ , 〈φ′〉 =




1
1
1



 φ′0Λ , (7)

〈φ〉 =




0
0
1



 φ0Λ , 〈ψ〉 =
(

1
0

)
ψ0Λ , (8)

〈ψ′〉 =
(

1
1

)
ψ′

0Λ , (9)

〈ζ〉 = ζ0Λ , 〈N〉 = N0Λ , 〈η〉 = u0Λ . (10)

Note that all the expectation values are real.
In terms of the T ′ and SU(5) component fields, the

above Lagrangian gives the following Yukawa interactions

for the charged fermions in the weak charged current in-
teraction eigenstates,

−LYuk ⊃ UR,i(Mu)ijQL,j + DR,i(Md)ijQL,j

+ER,i(Me)ij'L,j + h.c. , (11)

where QL denotes the quark doublets while UR and DR

denotes the iso-singet up- and down-type quarks, with
i and j being the generation indices. Similarly, 'L and
ER denote the iso-doublet and singlet charged leptons,
respectively. The matrices Mu, Md and Me, upon the
breaking of T ′ and the electroweak symmetry, are given
in terms of seven parameters by

Mu =




iφ′30 ( 1−i

2 )φ′30 0
( 1−i

2 )φ′30 φ′30 + (1− i
2 )φ2

0 y′ψ0ζ0

0 y′ψ0ζ0 1



 ytvu, (12)

Md =




0 (1 + i)φ0ψ′

0 0
−(1− i)φ0ψ′

0 ψ0N0 0
φ0ψ′

0 φ0ψ′
0 ζ0



 ydvdφ0 , (13)

Me =




0 −(1− i)φ0ψ′

0 φ0ψ′
0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0



 ydvdφ0 ,

(14)

which manifest the SU(5) relation, Md = MT
e , except for

the factor of −3 in the (22) entry of Me, due to the SU(5)
CG coefficient through the coupling to ∆45. In addition
to this −3 factor, the Georgi-Jarlskog (GJ) relations also
require Me,d being non-diagonal, leading to corrections to
the TBM pattern [9]. Note that the complex coefficients
in the above mass matrices arise entirely from the CG
coefficients of the T ′ group theory. More precisely, these
complex CG coefficients appear in couplings that involve
the doublet representations of T ′.

The mass matrices Mu,d are diagonalized by,
V †

u,RMuVu,L = diag(mu,mc,mt) and V †
d,RMdVd,L =

diag(md,ms,mb), where the mass eigenvalues on the
right-hand side of the equations are real and positive.
This gives the following weak charged current interaction
in the mass eigenstates of the fermions,

Lcc =
g

2
√

2

[
Wµ

+((x, t)J−
µ ((x, t) + Wµ

−((x, t)J+
µ ((x, t)

]
,

J−
µ = (u′, c′, t′)LγµVCKM




d′

s′

b′





L

. (15)

The complex mass matrices Mu,d lead to a complex quark
mixing matrix, VCKM = V †

u,LVd,L.
The interactions in LFF lead to the following neutrino

mass matrix,

Mν =




2ξ0 + u0 −ξ0 −ξ0

−ξ0 2ξ0 −ξ0 + u0

−ξ0 −ξ0 + u0 2ξ0




λv2

Mx
, (16)

The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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Quark and Lepton Mixing Matrices

• CKM mixing matrix:

• MNS matrix:

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo
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The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
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√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md
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√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
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UMNS = V †
e,LUTBM =




1 −θc/3 ∗

θc/3 1 ∗
∗ ∗ 1









√
2/3 1/

√
3 0

−
√

1/6 1/
√

3 −1/
√

2
−

√
1/6 1/

√
3 1/

√
2





(1)

1

angle, the corresponding mixing angle in the charged lepton sector, θe
12, is much suppressed due to

the GJ relations,

θe
12 !

√
me

mµ
! 1

3

√
md

ms
∼ 1

3
θc . (18)

As a result, the correction to the tri-bimaximal mixing pattern due to the mixing in the charged

lepton sector is small, and is given, to the leading order, by,

tan2 θ! ! tan2 θ!,TBM − eiβθc/3 , (19)

where the relative phase β is determined by the strengths and phases of the VEV’s, φ0 and ψ′
0.

With θc ! 0.22 and (φ0ψ′
0) being real, the factor eiβ turns out to be very close to 1. This

deviation thus naturally accounts for the difference between the prediction of the TBM matrix,

which gives tan2 θ!,TBM = 1/2, and the experimental best fit value, tan2 θ!,exp = 0.429. The

off diagonal matrix element in Me also generates a non-zero value for the neutrino mixing angle

θ13 ! θc/3
√

2 ∼ 0.05. We note that a more precise measurement of tan θ! will pin down the

phase of φ0ψ′
0, and thus the three leptonic CP phases, which may yield interesting consequences

on leptogenesis [10] and lepton flavor violating processes [11].

III. NUMERICAL RESULTS

The observed quark masses respect the following relation,

mu : mc : mt = ε2u : εu : 1, md : ms : mb = ε2d : εd : 1 , (20)

where εu ! (1/200) = 0.005 and εd ! (1/20) = 0.05.

In our model, the mass matrices for the down type quarks and charged leptons can be

parametrized as,

Md

ybvdφ0ζ0
=





0 (1 + i)b 0

−(1− i)b c 0

b b 1




,

Me

ybvdφ0ζ0
=





0 −(1− i)b b

(1 + i)b −3c b

0 0 1




,

(21)

and with the choice of b ≡ φ0ψ′
0/ζ0 = 0.00789 and c ≡ ψ0N0/ζ0 = 0.0474, the mass ratios for the

down type quarks and for the charged leptons are given by,

md : ms : mb = 0.00250 : 0.0499 : 1.00 , (22)

me : mµ : mτ = 0.000870 : 0.143 : 1.00 . (23)
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The values in Eq. 46 correspond to the following parameters in the standard
parametrization (PDG),

s12 ≡ λ = 0.227, s23 ≡ Aλ2 = 0.0411, s13 = 0.00412, c12 = 0.974, c23 = c13 " 0 .
(49)




0.838 0.542 0.0583e−i227o

−0.385− 0.0345ei227o

0.594− 0.0224ei227o

0.705
0.384− 0.0346ei227o −0.592− 0.0224ei227o

0.707



 (50)

→ |UMNS | =




0.838 0.542 0.0583
0.362 0.610 0.705
0.408 0.577 0.707



 (51)

J! = −0.00967 (52)

Charged lepton diagonalization matrix:



0.997ei177o

0.0823ei131o

1.31× 10−5e−i45o

0.0823ei41.8o

0.997ei176o

0.000149e−i3.58o

1.14× 10−6 0.000149 1



 (53)

sin2 2θatm = 1, tan2 θ" = 0.419, |Ue3| = 0.0583 (54)

tan2 θ" " tan2 θ",TBM +
1
2
θc cos δ (55)
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Predictions

• quark sector:

• CKM mixing angles & CPV measures

• Neutrino sector

8

α ≡ arg
(
−VtdV ∗

tb

VudV ∗
ub

)
= 110o , (35)

γ ≡ arg
(
−VudV ∗

ub

VcdV ∗
cb

)
= δq = 45.6o , (36)

J ≡ Im(VudVcbV
∗
ubV

∗
cs) = 2.69× 10−5 , (37)

A = 0.798 (38)
ρ = 0.299 (39)
η = 0.306 (40)

The mass ratios within the same sectors do not have RG corrections. With
the parameters chosen, we get

md : ms : mb = θ4.6
c : θ2.7

c : 1 , (41)
mu : mc : mt = θ7.5

c : θ3.7
c : 1 . (42)

Eq. 43 agree with Rosner et al (with θc $ 0.23), which gives
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c : θ3.7
c : 1 . (45)

The complex CKM matrix can be rewritten in the Standard Form by re-
defining the quark fields through two diagonal phase matrices:

Vckm →




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



·


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0.973e−i8.24o
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0.0408e−i7.28o

0.999



 ·


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0 0 1





=


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0.0411
0.00932− 0.00401ei45.6o −0.0400− 0.000935ei45.6o

1



 ,

(46)

with
α1 = 211.6o, α2 = 180o, α3 = 0, β1 = 123o, β2 = 171.5o . (47)

The values in Eq. 46 correspond to the following parameters in the standard
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with
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|VCKM | =




0.974 0.227 0.00412
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

 (48)
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Results from CKMFitter (Moriond 2009) at 3σ are

A = 0.767− 0.841 (11)
λ = 0.2227− 0.2277 (12)
ρ = 0.087− 0.212 (13)
η = 0.307− 0.389 (14)
J = (2.69− 3.37)× 10−5 (15)

The three angles of the unitarity triangle:

α = 76o − 110o (direct meas.) , (16)
β = 20.1o − 30.2o (meas. not in the fit) , (17)
γ = 18o − 130o (dir. meas.) . (18)

And the 3σ allowed range for the CKM matrix elements are

|Vud| = 0.974 (19)
|Vus| = 0.2227− 0.2277 (20)
|Vub| = 0.0031− 0.00395 (measurement not in the fit) (21)
|Vcd| = 0.2226− 0.2276 (22)
|Vcs| = 0.9735 (23)
|Vcb| = 0.0388− 0.0464 (measurement not in the fit) (24)
|Vtd| = 0.00795− 0.00915 (25)
|Vts| = 0.0385− 0.0415 (26)
|Vtb| = 0.999 (27)

With the following input parameters,

b ≡ φ0ψ
′
0/ζ0 = 0.00304 (28)

c ≡ ψ0N0/ζ0 = −0.0172 (29)
k ≡ y′ψ0ζ0 = −0.0266 (30)
h ≡ φ2

0 = 0.00426 (31)
g ≡ φ′30 = 0.0000145 (32)
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
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0.227ei23.1o

0.00412ei166o

0.227ei123o

0.973e−i8.24o

0.0412ei180o

0.00718ei99.7o

0.0408e−i7.28o

0.999



 . (33)

The predictions of our model for the angles in the unitarity triangle and the
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(46)

with
α1 = 211.6o, α2 = 180o, α3 = 0, β1 = 123o, β2 = 171.5o . (47)

The values in Eq. 46 correspond to the following parameters in the standard
parametrization (PDG),

s12 ≡ λ = 0.227, s23 ≡ Aλ2 = 0.0411, s13 = 0.00412, c12 = 0.974, c23 = c13 $ 0 .
(48)
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The values in Eq. 46 correspond to the following parameters in the standard
parametrization (PDG),

s12 ≡ λ = 0.227, s23 ≡ Aλ2 = 0.0411, s13 = 0.00412, c12 = 0.974, c23 = c13 " 0 .
(49)




0.838 0.542 0.0583e−i227o

−0.385− 0.0345ei227o

0.594− 0.0224ei227o

0.705
0.384− 0.0346ei227o −0.592− 0.0224ei227o

0.707



 (50)

→ |UMNS | =




0.838 0.542 0.0583
0.362 0.610 0.705
0.408 0.577 0.707



 (51)

J! = −0.00967 (52)

Charged lepton diagonalization matrix:



0.997ei177o

0.0823ei131o

1.31× 10−5e−i45o

0.0823ei41.8o

0.997ei176o

0.000149e−i3.58o

1.14× 10−6 0.000149 1



 (53)

sin2 2θatm = 1, tan2 θ" = 0.419, |Ue3| = 0.0583 (54)
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0.0823ei41.8o

0.997ei176o

0.000149e−i3.58o

1.14× 10−6 0.000149 1



 (53)

sin2 2θatm = 1, tan2 θ" = 0.419, |Ue3| = 0.0583 (54)

tan2 θ" " tan2 θ",TBM +
1
2
θc cos δ (55)

u0 = −0.0593, ξ0 = 0.0369, MX = 1014 GeV (56)

|m1| = 0.0156 eV, |m2| = 0.0179 eV, |m3| = 0.0514 eV (57)

4

The values in Eq. 46 correspond to the following parameters in the standard
parametrization (PDG),

s12 ≡ λ = 0.227, s23 ≡ Aλ2 = 0.0411, s13 = 0.00412, c12 = 0.974, c23 = c13 " 0 .
(49)




0.838 0.542 0.0583e−i227o

−0.385− 0.0345ei227o
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J! = −0.00967 (51)

4

charged fermion sector: 7 parameters

prediction for Dirac CP phase:  δ = 227 degrees

• Majorana phases

4

λ = 0.225, A = 0.637, ρ = 0.280 and η = 0.280. These
values are in agreement with current experimental re-
sults [16].

As a result of the GJ relations, our model predicts the
sum rule [9, 17] between the solar neutrino mixing angle
and the Cabibbo angle in the quark sector,

tan2 θ! ! tan2 θ!,TBM −
1

2
θc cos δ! . (32)

In addition, our model predicts θ13 ∼ θc/3
√

2. Numeri-
cally, the diagonalization matrix for the charged leptons
is,







0.997ei177o

0.08ei132o

1.2 × 10−5e−i45o

0.08ei41.9o

0.997ei177o

1.40 × 10−4e−i3.47o

10−6 1.4 × 10−4 1






. (33)

This leads to small deviation from the TBM pattern, giv-
ing

VPMNS =







0.837e−i179o

0.544e−i173o

0.0566ei138o

0.364e−i3.86o

0.609e−i173o

0.705ei3.45o

0.408ei180o

0.577 0.707






,

(34)
which gives sin2 θatm = 1, tan2 θ! = 0.422 and |Ue3| =
0.0566. The two VEV’s, u0 = −0.0593 and ξ0 = 0.0369,
give ∆m2

atm = 2.4 × 10−3 eV2 and ∆m2
! = 8.0 ×

10−5 eV2. As the three masses are given in terms of
two VEV’s, there exists a mass sum rule, m1 − m3 =
2m2, leading to normal mass hierarchy, ∆m2

atm > 0 [9].
The leptonic Jarlskog is predicted to be J! = −0.0094,
and equivalently, this gives a Dirac CP phase, δ! =
−46.9o in the standard parametrization. With such δ!,
the correction from the charged lepton sector can ac-
count for the difference between the TBM prediction and
the current best fit value for θ!. Our model predicts
(m1, m2, m3) = (0.0156,−0.0179, 0.0514) eV, with Ma-
jorana phases α21 = π and α31 = 0.

Our model has nine input parameters, predicting a to-
tal of twenty-two physical quantities: 12 masses, 6 mix-
ing angles, 2 Dirac CP violating phases and 2 Majorana
phases.

Conclusion.—We propose the complex group theoreti-
cal CG coefficients as a novel origin of CP violation. This
is manifest in our model based on SU(5) combined with
the double tetrahedral group, T ′. Due to the presence
of the doublet representations in T ′, there exist complex
CG coefficients, leading to explicit CP violation in the
model, while having real Yukawa couplings and scalar
VEVs. The predicted CP violation measures in the quark
sector are consistent with the current experimental data.
The leptonic Dirac CP violating phase is predicted to
be δ! ∼ −47o, which may be relevant for generating the
cosmological matter asymmetry.
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Flavor Violation in RS

• Two sources of flavor violation in RS:

• 5D Yukawa coupling constants

• 5D bulk mass terms

• gauge-fermion couplings in fermion mass eigenstates:

• non-universal bulk mass terms ⇒ tree-level FCNCs

• quark sector:

• most stringent constraint from 1st & 2nd generations 

• lepton sector:

• presence even in the limit of massless neutrinos

• μ → 3 e, μ-e conversion

• Generally:  FCNC constraints ⇒  Λ > O(10) TeV

9

In the fermion mass basis, the couplings between zero mode fermions and KK gauge bosons

are the given by

∑

n

Gn(Ψ0†V †f 2
Ψ0V Ψ0 + ψ0

u

†
W †

uf 2
ψ0

u
Wuψ

0
u + ψ0

d

†
W †

df 2
ψ0

d

Wdψ
0
d) (7)

The non-universal fΨ0, ψ0
u, ψ0

d
among the three generations lead to FCNC at tree level, as

can be seen in Eq. (7). In the quark sector, the strongest constraints come from the ∆F = 2

processes due to tree level exchange of KK gluons. The dominant contributions to εK are

from (V −A)× (V +A) operators that involve right-handed currents, leading to a bound on

the KK mass scale of 8 TeV, after all possible enhancements are included [12]. This bound

is derived with the assumption of generic anarchical 5D Yukawa couplings in the basis in

which bulk mass matrices are diagonal.

In the MFV scenario [12], it is assumed that the 5D Yukawa couplings are the only

source of the flavor mixing and that the bulk mass matrices are functions of the 5D Yukawa

matrices. Consequently, the flavor rotations on bulk masses and Yukawa couplings are no

longer independent. In Ref. [12], MFV is applied to the quark sector and the 5D mass

matrices are expanded as power series in 5D Yukawa matrices, Yu and Yd,

CQ ∼ rY †
u Yu + YdY

†
d , Cu ∼ Y †

u Yu, Cd ∼ Y †
d Yd , (8)

where the parameter r is some constant. The key observation of this set-up is that the in

the limit when r goes to zero, the 5D matrices CQ, Cd and Yd can all be simultaneously

diagonalized such that flavor violation in the down quark sector is completely eliminated.

The actual value of r, which sets the strength of flavor violation in the quark sector, is given

by the realistic fit to the quark masses and mixing. Remarkably, in order to obtain a large

top quark mass, the value of r is required to be small. Numerical studies show that the

preferred value of r is in the range of (0.1 − 0.4). This thus gives a further suppression of

order r2 in the (V − A) × (V + A) processes mentioned above.
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model to be tested at the colliders [14]. Suppression of flavor violation with bulk and brane

flavor symmetry has also been studied [15].

Lepton flavor violation in various rare leptonic processes mediated by neutral KK gauge

bosons in the RS model also give severe constraints on the KK mass scale. Lepton flavor

violation of RS model has been studied before [16, 17, 18]. Even in the case of massless

neutrinos, stringent bound on the first KK mass scale already arises from FCNC constraints

in scenarios with generic anarhic 5D Yukawa couplings. The most severe bound on the KK

mass is from µ → eγ, which requires the mass of the first KK mode to be greater than 15.8

TeV with values of 5D Yukawa couplings equal to 2. Moreover, there is a tension between

µ → eγ and the tree level flavor violating processes such as µ−e conversion, as they depend

on the 5D Yukawa coupling constants oppositely [18]. As a result, the allowed parameter

space for the 5D Yukawa couplings is very restricted and it is not possible to relax the bound

on the KK mass scale by tuning the 5D Yukawa coupling constants.

In this paper, we generalize MFV to the lepton sector. We first study the case in which

neutrinos are massless. In this case, we are able to choose a basis such that 5D bulk mass

matrices and 5D Yukawa matrices are diagonal simultaneously. Consequently, there are no

FCNC processes. In the presence of massive neutrinos, there are FCNC in the charged lepton

sector. We find that the FCNC effects in this case are controlled by one single parameter,

ξ. To accommodate small neutrino masses, it is required that ξ <∼ 0.1, leading to very

suppressed contributions to FCNC processes and thus allowing a light KK mass scale.

The paper is organized as follows. In Section II, we review the general flavor structure

of the RS model and a realization of MFV in the quark sector. In Section III, we apply the

MFV in the lepton sector. Section IV concludes the paper.

II. FLAVOR VIOLATION IN THE RS MODEL

In the RS model, there are two sources of flavor violation: the bulk mass matri-

ces (CQ, Cu, Cd) and the 5D Yukawa coupling matrices (Yu,Yd) in the quark sector, and

(CL, Ce, Cν) and (Ye,Yν) in the lepton sector, as defined in the following 5D Lagrangian,

L5D ⊃ ΨCΨΨ + ψuCψu
ψu + ψdCψd

ψd + H ΨλUψu + H ΨλDψd . (2)

3

generically independent}



Neutrino Mass Spectrum & Mixing

• Minimal Flavor Violation

• RS Quark sector: 

• RS Lepton sector:

• mild hierarchy among 5D parameters:  tuning needed for large neutrino 
mixing

• MFV with 

• some structure in 5D Yukawa needed to accommodate mixing 
angles and mass ratios simultaneously

generic anarchy case:

3

Even though the FCNC processes are suppressed due
to the MFV assumption, the MFV assumption does not
suppress flavor violation in the charged currents. In the
presence of massive neutrinos, there are new contribu-
tions to the rare decays !α → !β + γ, due to the charged
current interactions involving the exchange of KK W-
bosons and KK neutrinos. The zero mode contributions
are suppressed by the GIM mechanism. However, the
contributions of the KK gauge bosons and KK neutrinos
invalidate the conditions required by the GIM mecha-
nism, because of the heavy masses of the KK neutrinos
and the fact that the 4D effective mixing matrix is not
unitary. It has been shown that if the relevant entries in
the 5D Dirac Yukawa matrix are of order unity without
the assumption of MFV, the most stringent constraint,
which is from BR(µ → eγ), requires the first KK mass
scale to be >

∼ 25 TeV, assuming all SM fields are localized
on the TeV brane and only the RH neutrinos are in the
bulk [11]. In the case with all fermions and gauge bosons
in the bulk while Higgs is localized on the TeV brane, this
bound can be relaxed: with O(1) Yukawa coupling, the
bound on the first KK mode mass is ∼ 6.7 TeV, and it
can be further relaxed in the bulk Higgs case3. One way
to keep the first KK mass scale accessible to the LHC
while avoiding the µ → eγ constraint is to tune the el-
ements of the 5D Yukawa coupling. We comment that
this is possible with our MFV assumption, which ensures
the contributions to FCNC are under control. However,
in the case with general anarchical flavor structure in the
lepton sector without MFV assumption, the constraint
on the first KK mass can not be loosened by tuning the
Yukawa couplings, due to the opposite dependence on the
Yukawa couplings in the FCNC contributions.

For simplicity, we do not include CP violation in our
numerical results. In this case, the 5D bulk masses and
the leptonic Yukawa sector are determined by only 12 in-
dependent physical parameters. This is to be compared
with the generic anarchy case, in which the number of
independent parameters is 27. We show below that with
12 parameters, we are still able to find solutions that give
rise to all realistic lepton masses and mixing angles, even
in the presence of the constraint given by Eq. (6). In the
general case with small but not-vanished ξ, CL is not in
the diagonal form. The resulting coupled equations are
complicated to solve. For simplicity, we give a numerical
example with ξ = 0. In this limit, all FCNC vanish. We
leave the possibility of having ξ #= 0 for further investi-
gation.

With ξ = 0, all three matrices, CL, Ce and Ye,
can be diagonalized simultaneously. Realistic charged
fermion masses arise with Ye1

$ 0.405, Ye2
$ 0.375

and Ye3
$ 0.354, assuming a = c = d = 4. Be-

3 We thank K. Agashe for pointing this out to us.

cause the 5D charged fermion Yukawa matrix is diagonal,
the 4D effective PMNS matrix is determined entirely by
the neutrino sector. In our model, the light neutrino
masses are generated by the Dirac Yukawa couplings,
mν $ vFLV5DŶνFN , where the eigenvalues of FL and
FN are given by

fLi
=

√

1 − 2cLi

1 − ε1−2cLi

, fNi
=

√

1 − 2cNi

1 − ε1−2cNi

(8)

and cLi
and cNi

are the eigenvalues of CL and CN .
We choose the following 5D parameters as inputs:

θ12 $ 1.383, θ23 $ 1.358, θ13 $ 1.338, Yν1 $
0.713, Yν2 $ 0.5634 and Yν3 $ 0.5475, where Ŷν =
diag(Yν1

, Yν2
, Yν3

) and θ1,2,3 are the three angles that
parametrize the 5D mixing matrix V5D. The 5D Dirac
Yukawa coupling matrix is

Yν ≡ V5DŶν $





0.0307 0.128 0.533
−0.275 −0.504 0.123
0.657 −0.217 0.0267



 . (9)

With these 5D parameters, the effective 4D neutrino os-
cillation parameters are

sin2 θν
12 $ 0.28, sin2 θν

23 $ 0.49, sin2 θν
13 $ 0.023 ,

∆m2
21 $ 7.4 × 10−5eV2, ∆m2

31 $ 2.7 × 10−3eV2 ,(10)

which are in good agreement with experiments within
2σ [19]. Here we assume a slightly large value of d = 4
such that the magnitudes of the 5D Dirac Yukawa cou-
plings are small. As a consequence, µ → eγ mediated
by the heavy neutrinos is suppressed. We estimate the
branch fraction Br(µ → eγ) to be ∼ 10−12, induced by
charged current interactions, with the first KK mass scale
∼ 3 TeV. The branching fraction can be further sup-
presses by tuning the 5D Yukawa couplings and having
the Higgs in the bulk.

Even though the eigenvalues of Yν are of the same order
∼ O(0.5−0.7) and 5D mixing angles are ∼ O(1), Yν given
in Eq. (9) deviates from the generic anarchical case with
the largest ratio between two elements being O(25). This
deviation is required to give realistic neutrino mixing and
masses in the case of ξ $ 0, in which all FCNC vanish.
The reason is the following: in the generic anarchical
case, the left-handed mixing are given by Vij ∼ fLi

/fLj
,

and the large solar and atmospheric neutrino mixing an-
gles requires fL1

/fL2
∼ 1 and fL2

/fL3
∼ 1. However, in

the MFV case with ξ = 0, fLi
/fLj

is fixed by
√

mi/mj

and thus fL1
/fL2

$ 0.07 and fL2
/fL3

$ 0.24. To ac-
commodate these ratios as well as large mixing angles
simultaneously, some structure in the 5D Yukawa cou-
plings is thus needed4. It would be appealing to see if the

4 In the generic anarchical case, one would expect large θν

13
com-

parable to θν

12
, unless there exists some accidental cancellation.

large atm & solar mixing angles: 
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Even though the FCNC processes are suppressed due
to the MFV assumption, the MFV assumption does not
suppress flavor violation in the charged currents. In the
presence of massive neutrinos, there are new contribu-
tions to the rare decays !α → !β + γ, due to the charged
current interactions involving the exchange of KK W-
bosons and KK neutrinos. The zero mode contributions
are suppressed by the GIM mechanism. However, the
contributions of the KK gauge bosons and KK neutrinos
invalidate the conditions required by the GIM mecha-
nism, because of the heavy masses of the KK neutrinos
and the fact that the 4D effective mixing matrix is not
unitary. It has been shown that if the relevant entries in
the 5D Dirac Yukawa matrix are of order unity without
the assumption of MFV, the most stringent constraint,
which is from BR(µ → eγ), requires the first KK mass
scale to be >

∼ 25 TeV, assuming all SM fields are localized
on the TeV brane and only the RH neutrinos are in the
bulk [11]. In the case with all fermions and gauge bosons
in the bulk while Higgs is localized on the TeV brane, this
bound can be relaxed: with O(1) Yukawa coupling, the
bound on the first KK mode mass is ∼ 6.7 TeV, and it
can be further relaxed in the bulk Higgs case3. One way
to keep the first KK mass scale accessible to the LHC
while avoiding the µ → eγ constraint is to tune the el-
ements of the 5D Yukawa coupling. We comment that
this is possible with our MFV assumption, which ensures
the contributions to FCNC are under control. However,
in the case with general anarchical flavor structure in the
lepton sector without MFV assumption, the constraint
on the first KK mass can not be loosened by tuning the
Yukawa couplings, due to the opposite dependence on the
Yukawa couplings in the FCNC contributions.

For simplicity, we do not include CP violation in our
numerical results. In this case, the 5D bulk masses and
the leptonic Yukawa sector are determined by only 12 in-
dependent physical parameters. This is to be compared
with the generic anarchy case, in which the number of
independent parameters is 27. We show below that with
12 parameters, we are still able to find solutions that give
rise to all realistic lepton masses and mixing angles, even
in the presence of the constraint given by Eq. (6). In the
general case with small but not-vanished ξ, CL is not in
the diagonal form. The resulting coupled equations are
complicated to solve. For simplicity, we give a numerical
example with ξ = 0. In this limit, all FCNC vanish. We
leave the possibility of having ξ #= 0 for further investi-
gation.

With ξ = 0, all three matrices, CL, Ce and Ye,
can be diagonalized simultaneously. Realistic charged
fermion masses arise with Ye1

$ 0.405, Ye2
$ 0.375

and Ye3
$ 0.354, assuming a = c = d = 4. Be-

3 We thank K. Agashe for pointing this out to us.

cause the 5D charged fermion Yukawa matrix is diagonal,
the 4D effective PMNS matrix is determined entirely by
the neutrino sector. In our model, the light neutrino
masses are generated by the Dirac Yukawa couplings,
mν $ vFLV5DŶνFN , where the eigenvalues of FL and
FN are given by

fLi
=

√

1 − 2cLi

1 − ε1−2cLi

, fNi
=

√

1 − 2cNi

1 − ε1−2cNi

(8)

and cLi
and cNi

are the eigenvalues of CL and CN .
We choose the following 5D parameters as inputs:

θ12 $ 1.383, θ23 $ 1.358, θ13 $ 1.338, Yν1 $
0.713, Yν2 $ 0.5634 and Yν3 $ 0.5475, where Ŷν =
diag(Yν1

, Yν2
, Yν3

) and θ1,2,3 are the three angles that
parametrize the 5D mixing matrix V5D. The 5D Dirac
Yukawa coupling matrix is

Yν ≡ V5DŶν $





0.0307 0.128 0.533
−0.275 −0.504 0.123
0.657 −0.217 0.0267



 . (9)

With these 5D parameters, the effective 4D neutrino os-
cillation parameters are

sin2 θν
12 $ 0.28, sin2 θν

23 $ 0.49, sin2 θν
13 $ 0.023 ,

∆m2
21 $ 7.4 × 10−5eV2, ∆m2

31 $ 2.7 × 10−3eV2 ,(10)

which are in good agreement with experiments within
2σ [19]. Here we assume a slightly large value of d = 4
such that the magnitudes of the 5D Dirac Yukawa cou-
plings are small. As a consequence, µ → eγ mediated
by the heavy neutrinos is suppressed. We estimate the
branch fraction Br(µ → eγ) to be ∼ 10−12, induced by
charged current interactions, with the first KK mass scale
∼ 3 TeV. The branching fraction can be further sup-
presses by tuning the 5D Yukawa couplings and having
the Higgs in the bulk.

Even though the eigenvalues of Yν are of the same order
∼ O(0.5−0.7) and 5D mixing angles are ∼ O(1), Yν given
in Eq. (9) deviates from the generic anarchical case with
the largest ratio between two elements being O(25). This
deviation is required to give realistic neutrino mixing and
masses in the case of ξ $ 0, in which all FCNC vanish.
The reason is the following: in the generic anarchical
case, the left-handed mixing are given by Vij ∼ fLi

/fLj
,

and the large solar and atmospheric neutrino mixing an-
gles requires fL1

/fL2
∼ 1 and fL2

/fL3
∼ 1. However, in

the MFV case with ξ = 0, fLi
/fLj

is fixed by
√

mi/mj

and thus fL1
/fL2

$ 0.07 and fL2
/fL3

$ 0.24. To ac-
commodate these ratios as well as large mixing angles
simultaneously, some structure in the 5D Yukawa cou-
plings is thus needed4. It would be appealing to see if the

4 In the generic anarchical case, one would expect large θν

13
com-

parable to θν

12
, unless there exists some accidental cancellation.
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Even though the FCNC processes are suppressed due
to the MFV assumption, the MFV assumption does not
suppress flavor violation in the charged currents. In the
presence of massive neutrinos, there are new contribu-
tions to the rare decays !α → !β + γ, due to the charged
current interactions involving the exchange of KK W-
bosons and KK neutrinos. The zero mode contributions
are suppressed by the GIM mechanism. However, the
contributions of the KK gauge bosons and KK neutrinos
invalidate the conditions required by the GIM mecha-
nism, because of the heavy masses of the KK neutrinos
and the fact that the 4D effective mixing matrix is not
unitary. It has been shown that if the relevant entries in
the 5D Dirac Yukawa matrix are of order unity without
the assumption of MFV, the most stringent constraint,
which is from BR(µ → eγ), requires the first KK mass
scale to be >

∼ 25 TeV, assuming all SM fields are localized
on the TeV brane and only the RH neutrinos are in the
bulk [11]. In the case with all fermions and gauge bosons
in the bulk while Higgs is localized on the TeV brane, this
bound can be relaxed: with O(1) Yukawa coupling, the
bound on the first KK mode mass is ∼ 6.7 TeV, and it
can be further relaxed in the bulk Higgs case3. One way
to keep the first KK mass scale accessible to the LHC
while avoiding the µ → eγ constraint is to tune the el-
ements of the 5D Yukawa coupling. We comment that
this is possible with our MFV assumption, which ensures
the contributions to FCNC are under control. However,
in the case with general anarchical flavor structure in the
lepton sector without MFV assumption, the constraint
on the first KK mass can not be loosened by tuning the
Yukawa couplings, due to the opposite dependence on the
Yukawa couplings in the FCNC contributions.

For simplicity, we do not include CP violation in our
numerical results. In this case, the 5D bulk masses and
the leptonic Yukawa sector are determined by only 12 in-
dependent physical parameters. This is to be compared
with the generic anarchy case, in which the number of
independent parameters is 27. We show below that with
12 parameters, we are still able to find solutions that give
rise to all realistic lepton masses and mixing angles, even
in the presence of the constraint given by Eq. (6). In the
general case with small but not-vanished ξ, CL is not in
the diagonal form. The resulting coupled equations are
complicated to solve. For simplicity, we give a numerical
example with ξ = 0. In this limit, all FCNC vanish. We
leave the possibility of having ξ #= 0 for further investi-
gation.

With ξ = 0, all three matrices, CL, Ce and Ye,
can be diagonalized simultaneously. Realistic charged
fermion masses arise with Ye1

$ 0.405, Ye2
$ 0.375

and Ye3
$ 0.354, assuming a = c = d = 4. Be-

3 We thank K. Agashe for pointing this out to us.

cause the 5D charged fermion Yukawa matrix is diagonal,
the 4D effective PMNS matrix is determined entirely by
the neutrino sector. In our model, the light neutrino
masses are generated by the Dirac Yukawa couplings,
mν $ vFLV5DŶνFN , where the eigenvalues of FL and
FN are given by

fLi
=

√

1 − 2cLi

1 − ε1−2cLi

, fNi
=

√

1 − 2cNi

1 − ε1−2cNi

(8)

and cLi
and cNi

are the eigenvalues of CL and CN .
We choose the following 5D parameters as inputs:

θ12 $ 1.383, θ23 $ 1.358, θ13 $ 1.338, Yν1 $
0.713, Yν2 $ 0.5634 and Yν3 $ 0.5475, where Ŷν =
diag(Yν1

, Yν2
, Yν3

) and θ1,2,3 are the three angles that
parametrize the 5D mixing matrix V5D. The 5D Dirac
Yukawa coupling matrix is
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
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sin2 θν
12 $ 0.28, sin2 θν

23 $ 0.49, sin2 θν
13 $ 0.023 ,

∆m2
21 $ 7.4 × 10−5eV2, ∆m2

31 $ 2.7 × 10−3eV2 ,(10)

which are in good agreement with experiments within
2σ [19]. Here we assume a slightly large value of d = 4
such that the magnitudes of the 5D Dirac Yukawa cou-
plings are small. As a consequence, µ → eγ mediated
by the heavy neutrinos is suppressed. We estimate the
branch fraction Br(µ → eγ) to be ∼ 10−12, induced by
charged current interactions, with the first KK mass scale
∼ 3 TeV. The branching fraction can be further sup-
presses by tuning the 5D Yukawa couplings and having
the Higgs in the bulk.

Even though the eigenvalues of Yν are of the same order
∼ O(0.5−0.7) and 5D mixing angles are ∼ O(1), Yν given
in Eq. (9) deviates from the generic anarchical case with
the largest ratio between two elements being O(25). This
deviation is required to give realistic neutrino mixing and
masses in the case of ξ $ 0, in which all FCNC vanish.
The reason is the following: in the generic anarchical
case, the left-handed mixing are given by Vij ∼ fLi

/fLj
,

and the large solar and atmospheric neutrino mixing an-
gles requires fL1

/fL2
∼ 1 and fL2

/fL3
∼ 1. However, in

the MFV case with ξ = 0, fLi
/fLj

is fixed by
√

mi/mj

and thus fL1
/fL2

$ 0.07 and fL2
/fL3

$ 0.24. To ac-
commodate these ratios as well as large mixing angles
simultaneously, some structure in the 5D Yukawa cou-
plings is thus needed4. It would be appealing to see if the

4 In the generic anarchical case, one would expect large θν
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Even though the FCNC processes are suppressed due
to the MFV assumption, the MFV assumption does not
suppress flavor violation in the charged currents. In the
presence of massive neutrinos, there are new contribu-
tions to the rare decays !α → !β + γ, due to the charged
current interactions involving the exchange of KK W-
bosons and KK neutrinos. The zero mode contributions
are suppressed by the GIM mechanism. However, the
contributions of the KK gauge bosons and KK neutrinos
invalidate the conditions required by the GIM mecha-
nism, because of the heavy masses of the KK neutrinos
and the fact that the 4D effective mixing matrix is not
unitary. It has been shown that if the relevant entries in
the 5D Dirac Yukawa matrix are of order unity without
the assumption of MFV, the most stringent constraint,
which is from BR(µ → eγ), requires the first KK mass
scale to be >

∼ 25 TeV, assuming all SM fields are localized
on the TeV brane and only the RH neutrinos are in the
bulk [11]. In the case with all fermions and gauge bosons
in the bulk while Higgs is localized on the TeV brane, this
bound can be relaxed: with O(1) Yukawa coupling, the
bound on the first KK mode mass is ∼ 6.7 TeV, and it
can be further relaxed in the bulk Higgs case3. One way
to keep the first KK mass scale accessible to the LHC
while avoiding the µ → eγ constraint is to tune the el-
ements of the 5D Yukawa coupling. We comment that
this is possible with our MFV assumption, which ensures
the contributions to FCNC are under control. However,
in the case with general anarchical flavor structure in the
lepton sector without MFV assumption, the constraint
on the first KK mass can not be loosened by tuning the
Yukawa couplings, due to the opposite dependence on the
Yukawa couplings in the FCNC contributions.

For simplicity, we do not include CP violation in our
numerical results. In this case, the 5D bulk masses and
the leptonic Yukawa sector are determined by only 12 in-
dependent physical parameters. This is to be compared
with the generic anarchy case, in which the number of
independent parameters is 27. We show below that with
12 parameters, we are still able to find solutions that give
rise to all realistic lepton masses and mixing angles, even
in the presence of the constraint given by Eq. (6). In the
general case with small but not-vanished ξ, CL is not in
the diagonal form. The resulting coupled equations are
complicated to solve. For simplicity, we give a numerical
example with ξ = 0. In this limit, all FCNC vanish. We
leave the possibility of having ξ #= 0 for further investi-
gation.

With ξ = 0, all three matrices, CL, Ce and Ye,
can be diagonalized simultaneously. Realistic charged
fermion masses arise with Ye1

$ 0.405, Ye2
$ 0.375

and Ye3
$ 0.354, assuming a = c = d = 4. Be-

3 We thank K. Agashe for pointing this out to us.

cause the 5D charged fermion Yukawa matrix is diagonal,
the 4D effective PMNS matrix is determined entirely by
the neutrino sector. In our model, the light neutrino
masses are generated by the Dirac Yukawa couplings,
mν $ vFLV5DŶνFN , where the eigenvalues of FL and
FN are given by

fLi
=

√

1 − 2cLi

1 − ε1−2cLi

, fNi
=

√

1 − 2cNi

1 − ε1−2cNi

(8)

and cLi
and cNi

are the eigenvalues of CL and CN .
We choose the following 5D parameters as inputs:

θ12 $ 1.383, θ23 $ 1.358, θ13 $ 1.338, Yν1 $
0.713, Yν2 $ 0.5634 and Yν3 $ 0.5475, where Ŷν =
diag(Yν1

, Yν2
, Yν3

) and θ1,2,3 are the three angles that
parametrize the 5D mixing matrix V5D. The 5D Dirac
Yukawa coupling matrix is

Yν ≡ V5DŶν $





0.0307 0.128 0.533
−0.275 −0.504 0.123
0.657 −0.217 0.0267



 . (9)

With these 5D parameters, the effective 4D neutrino os-
cillation parameters are

sin2 θν
12 $ 0.28, sin2 θν

23 $ 0.49, sin2 θν
13 $ 0.023 ,

∆m2
21 $ 7.4 × 10−5eV2, ∆m2

31 $ 2.7 × 10−3eV2 ,(10)

which are in good agreement with experiments within
2σ [19]. Here we assume a slightly large value of d = 4
such that the magnitudes of the 5D Dirac Yukawa cou-
plings are small. As a consequence, µ → eγ mediated
by the heavy neutrinos is suppressed. We estimate the
branch fraction Br(µ → eγ) to be ∼ 10−12, induced by
charged current interactions, with the first KK mass scale
∼ 3 TeV. The branching fraction can be further sup-
presses by tuning the 5D Yukawa couplings and having
the Higgs in the bulk.

Even though the eigenvalues of Yν are of the same order
∼ O(0.5−0.7) and 5D mixing angles are ∼ O(1), Yν given
in Eq. (9) deviates from the generic anarchical case with
the largest ratio between two elements being O(25). This
deviation is required to give realistic neutrino mixing and
masses in the case of ξ $ 0, in which all FCNC vanish.
The reason is the following: in the generic anarchical
case, the left-handed mixing are given by Vij ∼ fLi

/fLj
,

and the large solar and atmospheric neutrino mixing an-
gles requires fL1

/fL2
∼ 1 and fL2

/fL3
∼ 1. However, in

the MFV case with ξ = 0, fLi
/fLj

is fixed by
√

mi/mj

and thus fL1
/fL2

$ 0.07 and fL2
/fL3

$ 0.24. To ac-
commodate these ratios as well as large mixing angles
simultaneously, some structure in the 5D Yukawa cou-
plings is thus needed4. It would be appealing to see if the

4 In the generic anarchical case, one would expect large θν
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, unless there exists some accidental cancellation.
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mν $ vFLV5DŶνFN , where the eigenvalues of FL and
FN are given by

fLi
=

√

1 − 2cLi

1 − ε1−2cLi

, fNi
=

√

1 − 2cNi

1 − ε1−2cNi

(8)

and cLi
and cNi

are the eigenvalues of CL and CN .
We choose the following 5D parameters as inputs:

θ12 $ 1.383, θ23 $ 1.358, θ13 $ 1.338, Yν1 $
0.713, Yν2 $ 0.5634 and Yν3 $ 0.5475, where Ŷν =
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mν $ vFLV5DŶνFN , where the eigenvalues of FL and
FN are given by

fLi
=

√

1 − 2cLi

1 − ε1−2cLi

, fNi
=

√

1 − 2cNi

1 − ε1−2cNi

(8)

and cLi
and cNi

are the eigenvalues of CL and CN .
We choose the following 5D parameters as inputs:

θ12 $ 1.383, θ23 $ 1.358, θ13 $ 1.338, Yν1 $
0.713, Yν2 $ 0.5634 and Yν3 $ 0.5475, where Ŷν =
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SM flavor group from U(3)Q × U(3)u × U(3)d down to
U(2)Q × U(2)u × U(3)d × U(1)top, where Q, u, d stand
for quark doublets and up and down type singlets re-
spectively. In addition the extra source is quasi-aligned
with the SM sources of flavor breaking and the missalign-
ment is at most of order the CKM matrix but new
sources of CP violation (CPV) are present. Thus, tran-
sitions between the first [second] and third generation
are suppressed by O(λ3

C) [O(λ2
C)], where λC ∼ 0.23 is

the Cabibbo mixing angle. Despite these suppressions,
it was recently pointed out [7] that the presence of addi-
tional, flavor violating, right handed (RH) currents would
yield a stringent bound on this framework resulting with
a bound of ΛNMFV ≥ 8 TeV. This implies a rather severe
little hierarchy problem.

We present a novel variant of the above models, in
which at leading order (LO) flavor violation in the down
type quark sector is eliminated from the theory and at
the same time leave intact the framework appealing fea-
tures such as the solution of the hierarchy problem, flavor
puzzle and others. The fundamental theory is also very
minimal in terms of its number of parameters and con-
tains only four flavor violating parameters, three mixing
angles and one CPV phase. This implies that we also
eliminated the presence of other CPV, “Majorana-like”
phases, which induced an RS1 CP problem [5]. Note that
unlike in the SM, in our model the flavor violating pa-
rameters are of order unity, yet no conflict is obtained
with precision flavor constraints.

The model. Our set-up is very simple. Applying
the MFV paradigm [8] to our case we assume that the
only sources of flavor breaking are the 5D up and down
Yukawa matrices, Yu,d to a bulk Higgs, H . However, un-
like the 4D MFV case (or other extensions with trivial fla-
vor structure, for example universal extra dimension [9])
in our framework the 5D Yukawa matrices are structure-
less. In other words the eigenvalues of Yu,d are all of the
same order. Furthermore, they are totally missaligned so
that the 5D “CKM” matrix V KM

5 is anarchic.

In addition, the theory contains 5D vector-like, 3 × 3,
mass matrices CQ,u,d for each of the quark representa-
tions. Bulk MFV implies that the only vector-like flavor-
breaking spurions for the doublets [singlets] are [10]
Yu,dY

†
u,d [Y †

u,dYu,d]. We emphasize that V KM
5 is the only

source of flavor and CPV in our theory. Under the global
symmetry U(3)Q × U(3)u × U(3)d, either Yu or Yd can
be brought to diagonal form, and V KM

5 resides in the re-
maining one. According to our MFV assumption we can
expand the 5D mass matrices as a power series in Yu,d:

Cu,d = Y †
u,dYu,d + . . . , CQ = rYuY †

u + YdY
†
d + . . . , (1)

where universal terms and overall order one coefficients
were omitted for simplicity and the dots stand for sub-
dominant higher order terms (as discussed below). The

relevant part of the 5D Lagrangian is given by

Lgen = CQ,u,d

(

Q̄, ū, d̄
)

(Q, u, d) + H Yu,dQ̄ (u, d) , (2)

where Ci are in units of k the AdS curvature, and we will
assume that the Higgs is a bulk field (see later) so that
Yi are measured in units of 1/

√
k.

Our first result is that despite of the fact that the fun-
damental theory is anarchic MFV the low energy is a
hierarchic one. This is since the eigenvalues the Ci matri-
ces are sizable, which will induce geometrical separation
in the extra dimension picture or the presence of sizable
anomalous dimension in the dual conformal field theory
(CFT) [11].

The second, maybe less trivial result, is that this the-
ory flows to approximate NMFV with additional sources
of flavor and CPV. In order to see that recall that the 4D
mass matrices for the zero modes can be written as [5]
mu,d % 2vFQYu,dFu,d, where Fx correspond to the value
of the quark zero-modes on the TeV brane. More ex-
plicitly, the eigenvalues fxi of the Fx matrices are given
by [3, 5] f2

xi = (1/2 − cxi)/(1 − ε1−2c
xi ) , where cxi

are the eigenvalues of the Cx matrices, ε = exp[−kπrc],
kπrc = log[MP̄l/TeV], MP̄l is the reduced Planck mass
and v % 174GeV. The fxi correspond to the amount of
compositeness of the different generations. The Yu,d are
anarchic, and therefore the corresponding mixing angles
are given by ratios of the Fi eigenvalues. For instance,
the form of the 4D mass matrices for the zero modes
implies that the rotation to mass eigenbasis diagonal-
izes (m2

u,d)ij = 4v2(FQYu,dFu,dF
†
u,dY

†
u,dF

†
Q)ij ∼ fQifQj .

This implies that (VCKM)ij ∼ fQi/fQj and thus the cQi

eigenvalues control the CKM mixing angles. [5].
The couplings of two zero modes to the gauge KK

states (which are localized near the TeV brane), have a
flavor structure that is different from the 4D mass matri-
ces. They are proportional to F 2

Q,u,d, which is not aligned
with mu,d. Thus new flavor and CPV phases are present
in the low energy theory. However, the NMFV limit is
realized since one eigenvalue of (Fu,Q,d) is much larger
than the others, and thus an approximate U(2) is pre-
served (so that F 2

Q and mu,d are quasi-aligned) [6]. Note
that the theory contains RH currents since in the mass
basis the Cu,d matrices are not diagonal.

Flavor cQ, fQ cu, fu cd, fd

I 0.64, 0.002 0.68, 7 10−4 0.65, 2 10−3

II 0.59, 0.01 0.53, 0.06 0.60, 0.008

III 0.46, 0.2 - 0.06, 0.8 0.58, 0.02

TABLE I: The eigenvalues, of Cx, Fx which roughly yield the
right masses and CKM elements at the TeV scale [4].

Our third result is that in the limit where r in Eq. (1)
goes to zero, CQ,Cd, and Yd can all be simultaneously di-
agonalized. Therefore, flavor violation in the down sector
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B. Massive Neutrino Case

To accommodate the massive neutrinos and lepton mixing, we introduce three right-

handed neutrinos in the model. As mentioned in Sec. II, the RH neutrinos reside in different

SU(2)R doublets from those that contain the iso-spin singlet charged leptons. The right-

handed neutrinos couple to the lepton doublets to form the Dirac mass terms. The relevant

Lagrangian in this case is given by

Llep
5D ⊃ LCLL + eCee + NCNN + H LYee + HLYνN . (13)

The smallness of neutrino masses is then archived by localizing the right-handed neutrinos

close to the Planck brane such that their overlap with the lepton doublets is small.

With the MFV assumption, the 5D bulk mass matrices are related to the 5D Yukawa

couplings as

Ce = aY †
e Ye, CN = dY †

ν Yν , CL = c(ξYνY
†
ν + YeY

†
e ) , (14)

where a, d, c are O(1) parameters. With three right-handed neutrinos, the global flavor

symmetry is U(3)L × U(3)e × U(3)N , with which one can rotate to a basis where either Ye

or Yν is diagonal. In the following analysis, we work in the basis in which Ye is diagonal and

it is denoted by Ŷe. In this basis, Yν can be written as Yν = V5DŶν , where V5D is the 5D

leptonic mixing matrix. All the flavor mixings in the lepton sector are generated by V5D. In

this basis, both Ce and CN are diagonal. However, due to the term which is proportional to

the parameter ξ, the 5D bulk mass matrix CL is not diagonal and it can be written as,

CL = c(ξV5DĈNV †
5D + Ĉe) , (15)

where ĈN ≡ dŶνŶ †
ν and Ĉe ≡ aŶeŶ †

e are diagonal. The eigevalues of CL give the zero

mode localization of the SU(2)L doublets along the fifth dimension. Eq. (15), which results

from the MFV assumption, leads to a set of conditions that constrain the 5D bulk mass

parameters.

The non-diagonal term in Eq. (15) is the source of the FCNC in the charged lepton

sector. Because this term is proportional to ξ, the size of the contributions to FCNC is thus

determined by the value of ξ, which turns out to be small to accommodate realistic lepton

masses, as we show below. Because Eq. (15) involves the unknown mixing matrix V5D, to
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T′ Family Symmetry as a Solution

• Family Symmetry based on double tetrahedral group, T′ : 

• TBM neutrino mixing 

⇒ 3 families of lepton doublets transform as 3

⇒ common bulk mass term for all lepton doublets

⇒ absence of tree-level FCNCs

⇒ neutrino mixing from CG coefficients (decouple from masses)

⇒ alleviate tuning in Yukawa couplings 

• Realistic quark masses & mixing

⇒ 3 families of quarks transform as (1+2)

⇒ common bulk mass term for 1st & 2nd generations of quarks

⇒ absence of FCNCs in 1st & 2nd generations
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