### Soft-Wall Stabilization

#### Joan Antoni Cabrer

IFAE, Barcelona

Work in collaboration with Gero von Gersdorff and Mariano Quirós.

arXiv:0907.5361

# Introduction: Warped extra dimensions

We will concentrate on 5D geometries with a metric

$$ds^2 = e^{-2A(y)} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + dy^2 = e^{-2A(z)} \left( \eta_{\mu\nu} dx^{\mu} dx^{\nu} + dz^2 \right)$$

#### The RS model 1

AdS: 
$$e^{-2A(y)} = e^{-2ky} = \frac{1}{(kz)^2}$$

- RS1: Two branes. Requires stabilization of brane separation.
   GW mechanism <sup>2</sup>: introduction of a bulk scalar field.
- RS2: Single brane (UV).



<sup>&</sup>lt;sup>1</sup>Randall, Sundrum (1999)

<sup>&</sup>lt;sup>2</sup>Goldberger, Wise (2009)
J. A. Cabrer (IFAE, Barcelona)

#### Soft-Wall models

- Warped models with a single brane (y=0).
  - Metric is AdS near the brane.
- IR brane is replaced by a naked singularity at finite  $y(y_s)$ .
  - $\triangleright$   $y_s$  needs to be dynamically fixed by a GW-like mechanism.
  - ▶ Can correspond to finite or infinite  $z_s$ .
- Give rise to interesting phenomenology:
  - Modelization of Regge behaviour of excited mesons (AdS/QCD).  $(m_n^2 \sim n)$
  - Alternative to RS1 for EWSB models.
  - ▶ 5D description of unparticles with a mass gap. <sup>3</sup>

<sup>&</sup>lt;sup>1</sup>Karch, Katz, Son, Stephanov (2006); Gürsoy, Kiritsis (2007)

<sup>&</sup>lt;sup>2</sup>Falkowski, Perez-Victoria (2008); Batell, Gherghetta, Sword (2008)

<sup>&</sup>lt;sup>3</sup>Cacciapaglia, Marandella, Terning (2008); Falkowski, Perez-Victoria (2008)

# The Scalar-Gravity system

- The metric is generated by the background of a bulk scalar field  $\phi(y)$  with boundary conditions at the brane  $\phi(y=0)=\phi_0$ .
  - ▶ Provides a mechanism to stabilize the length of the extra dimension.
- In order to find the backreaction we need to solve the Einstein EOM

The "superpotential" method 4 (mathematical trick)

$$V(\phi) \equiv 3 \left(\partial_{\phi} W(\phi)\right)^{2} - 12W(\phi)^{2}$$

$$\phi'(y) = \partial_{\phi} W(\phi[y])$$
  $A'(y) = W(\phi[y])$ 

#### A classification of soft-wall models

• Depending on the asymptotic behaviour of the superpotential  $W(\phi)$  near the singularity, we get different behaviours

| $W(\phi)$             | $\leq \phi^2$ | $> \phi^2$<br>$< e^{\phi}$ | $e^{\phi}$  | $e^{\phi}\phi^{\beta}$ $0<\beta\leq \frac{1}{2}$ | $>$ $e^{\phi}\phi^{rac{1}{2}}$ $<$ $e^{2\phi}$ | $\geq e^{2\phi}$ |
|-----------------------|---------------|----------------------------|-------------|--------------------------------------------------|-------------------------------------------------|------------------|
| y <sub>s</sub>        | $\infty$      | $\infty$ finite            |             |                                                  |                                                 |                  |
| $Z_S$                 | $\infty$      |                            |             |                                                  | finite                                          |                  |
| mass                  | continuous    |                            | continuous  | discrete                                         |                                                 |                  |
| spectrum*             |               |                            | w/ mass gap | $m_n \sim n^{2\beta}$                            | $m_n \sim n$                                    |                  |
| consistent solution** |               |                            | yes         |                                                  |                                                 | no               |

<sup>\*</sup> Fluctuations of any bulk field.

 $<sup>^{**}</sup>$  Boundary EOMs satisfied at  $y_s$  and singularity of the "good kind"  $^5$ 

#### A soft-wall model with natural stabilization

Let us consider a simple soft-wall model with the listed properties

$$W(\phi) = k \left( 1 + e^{\nu \phi} \right) \quad 0 \le \nu \le 2$$
 
$$A(y) = ky - \frac{1}{\nu^2} \log \left( 1 - \frac{y}{y_s} \right) \quad , \quad \phi(y) = -\frac{1}{\nu} \log \left[ \nu^2 k (y_s - y) \right]$$

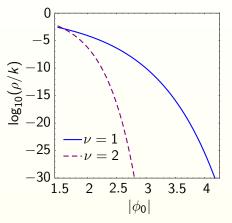
- The singularity is located at  $ky_s = \frac{1}{\nu^2}e^{-\nu\phi_0}$
- The relevant mass scale is  $\rho = k(ky_s)^{-1/\nu^2}e^{-ky_s}$

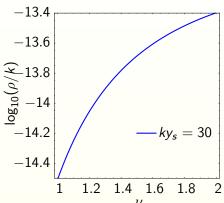
$$\log \frac{k}{\rho} \sim \frac{e^{\nu(-\phi_0)}}{\nu^2} + \cdots$$

Double exponential: A huge hierarchy can be generated with very little fine-tuning.

# The hierarchy generation

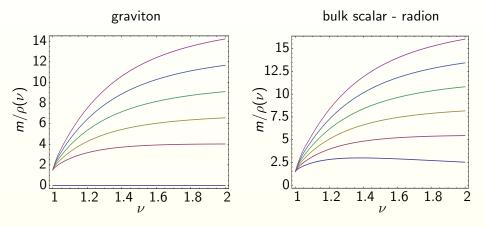
$$ky_s = \frac{1}{\nu^2} e^{-\nu\phi_0}$$
  $\frac{\rho}{k} = (ky_s)^{-1/\nu^2} e^{-ky_s}$ 





## Mass spectrum

- The mass spectrum of any field propagating in the bulk behaves as
  - $0 < \nu < 1 \Rightarrow$  continuous w/o mass gap
  - $\nu=1\Rightarrow$  continuous w/ mass gap
  - $\nu > 1 \Rightarrow$  discrete  $(m_n \sim n)$



#### Future work

- $\nu >$  1: KK modes can be produced at LHC by their interaction with matter. Specific signatures different from RS1.
- In order to solve the gauge hierarchy problem the Higgs boson should propagate in the bulk (KK modes are localized near the singularity).
- For  $\nu=1$ , the continuum spectra with a mass gap can interact with SM fields in the brane. Could describe unparticle phenomenology within a concrete model.
- When  $m_n^2 \sim n$ , a phenomenological descripton of AdS/QCD would be possible, and the QCD scale can be naturally stabilized.

10 / 10