Fourth Generation Leptons in AdS_{5}

Gustavo Burdman

FermiLab and University of São Paulo
In collaboration with with Oscar Eboli, Leandro Da Rold, Ricardo Matheus and Carlos Haluch

Four Generations in a Slice of AdS_{5}

- Compact extra dimension with AdS metric
- Bulk gauge theory: $S U(3) \times S U(2)_{L} \times S U(2)_{R} \times U(1)_{X}$
- Four generations of SM fermions:
- UV-localized light SM fermions
- $Q^{3}, t_{R} \sim$ IR-localized
- IR-localized 4th Generation

The Fourth-Generation Lepton Sector

$$
L_{4}=\binom{N_{4}}{E_{4}}_{L}, E_{4 R}, N_{4 R} \quad \text { Acquire masses } O\left(m_{U_{4}}\right)
$$

The Fourth-Generation Lepton Sector

Neutrino Masses and Mixings

- See-saw:

UV-localized Majorana mass term \Rightarrow usual see-saw for light neutrinos.
See-saw not affecting IR-localized N_{4}, remains heavy.

- To get $V_{M N S}$
$\Rightarrow L_{4}$ coupling \simeq equally to the 3 lighter generations
- $\mu \rightarrow e \gamma: V_{4 i}<O(0.01)$

The Fourth-Generation Lepton Sector at the LHC

Heavy Lepton pair-production at the LHC
(G.B., Da Rold, Eboli, Haluch, Matheus in progress)

Assuming $m_{E_{4}}>m_{N_{4}}: \quad N_{4} \rightarrow \ell^{-} W^{+}$, with $\ell=e, \mu, \tau$
For instance using

$$
p p \rightarrow N_{4} \bar{N}_{4} \rightarrow e^{ \pm} \mu^{\mp} W^{+} W^{-}
$$

backgrounds: $t \bar{t}+2 j, W^{+} W^{-}+4 j$
Seeing the Interactions with EW KK Gauge Bosons

- Electroweak KK Gauge bosons are narrower than KK gluon
- They represent more than $1 / 3$ of the cross section
- $\sigma\left(p p \rightarrow N_{4} \bar{N}_{4} \rightarrow e^{ \pm} \mu^{\mp} W^{+} W^{-}\right) \simeq O$ (few) $f b$

The Fourth-Generation Lepton Sector at the LHC
$E_{4}^{ \pm}$production

- For $M_{E 4}<M_{N 4} \Rightarrow E_{4}^{-} \rightarrow W^{-} \nu_{i}$
- For $M_{E 4}>M_{N 4}, 2$ body still dominates over $E_{4}^{-} \rightarrow N_{4} f_{1} \bar{f}_{2}$ if $\Delta M<M_{W}$ (even for $V_{4 i}<0.01$)
- Larger $\sigma_{\text {prod. }}$ due to $\gamma, A^{(1)}$

$$
\Rightarrow p p \rightarrow E_{4}^{+} E_{4}^{-} \rightarrow W^{+} W^{-}+E_{T \text { miss }}
$$

Very hard due to backgrounds. Maybe cutting hard on $E_{T \text { miss }}$

The Fourth-Generation Lepton Sector at the LHC

$E_{4} N_{4}$ production

- Through the charged current: $W^{(0) \pm}, W^{(1) \pm}$
- Again, 2 body decays dominate independently of sign of ΔM

$$
p p \rightarrow E_{4}^{-} N_{4} \rightarrow S S 2 L+W(j j)+E_{T_{\text {miss }}}
$$

Backgrounds manageable thanks to SS2L

