Fourth Generation Leptons in AdS₅

Gustavo Burdman

FermiLab and University of São Paulo

In collaboration with with Oscar Eboli, Leandro Da Rold, Ricardo
Matheus and Carlos Haluch

Four Generations in a Slice of AdS₅

- Compact extra dimension with AdS metric
- Bulk gauge theory: $SU(3) \times SU(2)_L \times SU(2)_R \times U(1)_X$
- Four generations of SM fermions:
 - UV-localized light SM fermions
 - Q^3 , $t_R \sim \text{IR-localized}$
 - IR-localized 4th Generation

The Fourth-Generation Lepton Sector

$$L_4 = \begin{pmatrix} N_4 \\ E_4 \end{pmatrix}_I$$
, E_{4R} , N_{4R} Acquire masses $O(m_{U_4})$

The Fourth-Generation Lepton Sector

Neutrino Masses and Mixings

• See-saw:

UV-localized Majorana mass term \Rightarrow usual see-saw for light neutrinos.

See-saw not affecting IR-localized N_4 , remains heavy.

- To get V_{MNS}
 - \Rightarrow L_4 coupling \simeq equally to the 3 lighter generations
- $\mu \to e \gamma$: $V_{4i} < O(0.01)$

The Fourth-Generation Lepton Sector at the LHC

Heavy Lepton pair-production at the LHC

(G.B., Da Rold, Eboli, Haluch, Matheus in progress)

Assuming $m_{E_4} > m_{N_4}$: $N_4 \to \ell^- W^+$, with $\ell = e, \mu, \tau$ For instance using

$$pp
ightarrow N_4 \bar{N}_4
ightarrow e^{\pm} \mu^{\mp} W^+ W^-$$

backgrounds: $t\bar{t} + 2j$, $W^+W^- + 4j$

Seeing the Interactions with EW KK Gauge Bosons

- Electroweak KK Gauge bosons are narrower than KK gluon
- They represent more than 1/3 of the cross section
- $\sigma(pp \to N_4 \bar{N}_4 \to e^{\pm} \mu^{\mp} W^+ W^-) \simeq O(\text{few}) \text{ fb}$

The Fourth-Generation Lepton Sector at the LHC

E_4^{\pm} production

- ullet For $M_{E4} < M_{N4} \Rightarrow E_4^- \rightarrow W^-
 u_i$
- For $M_{E4} > M_{N4}$, 2 body still dominates over $E_4^- \to N_4 f_1 \bar{f}_2$ if $\Delta M < M_W$ (even for $V_{4i} < 0.01$)
- Larger $\sigma_{\text{prod.}}$ due to γ , $A^{(1)}$

$$\Rightarrow pp \rightarrow E_4^+ E_4^- \rightarrow W^+ W^- + E_{T \mathrm{miss.}}$$

Very hard due to backgrounds. Maybe cutting hard on $E_{T \text{miss}}$.

The Fourth-Generation Lepton Sector at the LHC

E_4N_4 production

- Through the charged current: $W^{(0)\pm}, W^{(1)\pm}$
- ullet Again, 2 body decays dominate independently of sign of ΔM

$$pp \rightarrow E_4^- N_4 \rightarrow SS2L + W(jj) + E_{T miss.}$$

Backgrounds manageable thanks to SS2L