Dark Matter Implication and Collider Phenomenology

Shufang Su • U. of Arizona

In collaboration with E. Dolle, X. Miao and B. Thomas

→ Introduce another Higgs field that only couples to gauge sector

impose Z₂ parity: SM particles + , extra Higgs: -

$$H_1 = H_{\mathrm{SM}}$$

$$H_2 = \begin{pmatrix} H^+ \\ (S+iA)/\sqrt{2} \end{pmatrix}$$
 lightest one: DM candicate

"Inert" Doublet Model (IDM)

$$V = \mu_1^2 |H_1|^2 + \mu_2^2 |H_2|^2 + \lambda_1 |H_1|^4 + \lambda_2 |H_2|^4 + \lambda_3 |H_1|^2 |H_2|^2 + \lambda_4 |H_1^{\dagger} H_2|^2 + \frac{\lambda_5}{2} \left[(H_1^{\dagger} H_2)^2 + h.c. \right]$$

$$(\mu_1^2, \mu_2^2, \lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5)$$

 $(u_1^2, \mu_2^2, \lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5) \longrightarrow (v, m_h, m_S, \delta_1, \delta_2, \lambda_2, \lambda_L)$

→ Introduce another Higgs field that only couples to gauge sector

impose Z₂ parity: SM particles + , extra Higgs: -

$$H_1 = H_{\mathrm{SM}}$$

$$H_2 = \begin{pmatrix} H^+ \\ (S+iA)/\sqrt{2} \end{pmatrix}$$
 lightest one: DM candicate

"Inert" Doublet Model (IDM)

$$V = \mu_1^2 |H_1|^2 + \mu_2^2 |H_2|^2 + \lambda_1 |H_1|^4 + \lambda_2 |H_2|^4 + \lambda_3 |H_1|^2 |H_2|^2 + \lambda_4 |H_1^{\dagger} H_2|^2 + \frac{\lambda_5}{2} \left[(H_1^{\dagger} H_2)^2 + h.c. \right]$$

$$(\nu, m_h, m_S, \delta_1, \delta_2, \lambda_2, \lambda_1)$$

 $\delta_1 = m_{H\pm} - m_S$

→ Introduce another Higgs field that only couples to gauge sector

impose Z₂ parity: SM particles + , extra Higgs: -

$$H_1 = H_{\rm SM}$$

$$H_2 = \begin{pmatrix} H^+ \\ (S+iA)/\sqrt{2} \end{pmatrix}$$
 lightest one: DM candicate

"Inert" Doublet Model (IDM)

$$V = \mu_1^2 |H_1|^2 + \mu_2^2 |H_2|^2 + \lambda_1 |H_1|^4 + \lambda_2 |H_2|^4 + \lambda_3 |H_1|^2 |H_2|^2 + \lambda_4 |H_1^{\dagger} H_2|^2 + \frac{\lambda_5}{2} \left[(H_1^{\dagger} H_2)^2 + h.c. \right]$$

$$(\nu, m_h, m_S, \delta_1, \delta_2, \lambda_2, \lambda_1)$$

 $\delta_1 = m_{H\pm} - m_S$

 $\delta_2 = m_A - m_S$

→ Introduce another Higgs field that only couples to gauge sector

impose Z₂ parity: SM particles + , extra Higgs: -

$$H_1 = H_{\rm SM}$$

$$H_2 = \begin{pmatrix} H^+ \\ (S+iA)/\sqrt{2} \end{pmatrix}$$
 lightest one: DM candicate

"Inert" Doublet Model (IDM)

$$V = \mu_1^2 |H_1|^2 + \mu_2^2 |H_2|^2 + \lambda_1 |H_1|^4 + \lambda_2 |H_2|^4 + \lambda_3 |H_1|^2 |H_2|^2 + \lambda_4 |H_1^{\dagger} H_2|^2 + \frac{\lambda_5}{2} \left[(H_1^{\dagger} H_2)^2 + h.c. \right]$$

$$(v, m_h, m_S, \delta_1, \delta_2, \lambda_2, \lambda_L)$$

 $\delta_1 = m_{H\pm} - m_S$

 $\delta_2 = m_A - m_S$

(SSh coupling $\lambda_L = \overline{\lambda_3 + \lambda_4 + \lambda_5}$

- **♦ Vacuum stability**
- Perturbativity
- ♦ Dark matter direct detection
- ♦ W and Z decay width $W\rightarrow S/A + H^{\pm}$, $Z\rightarrow S+A$, $H^{+}H^{-}$
- + LEP II constraints

Neutral and charged Higgs searches at LEP and Tevatron: does not apply rely on VVh coupling and the couplings of Higgses to fermions

♦ LEP II constraints

MSSM searches: $e^+e^- \rightarrow \chi_1^0 \chi_2^0$ with $\chi_2^0 \rightarrow \chi_1^0 qq/\mu\mu/ee$ similar to $e^+e^- \rightarrow$ SA with $A \rightarrow Sqq/\mu\mu/ee$

E. Lundstrom, M. Gustafsson and J. Edsjo, 0810.3924

MSSM searches: $e^+e^- \rightarrow \chi_1^+ \chi_1^-$ similar to $e^+e^- \rightarrow H^+H^-$

⇒ m_{H±} ≥ 70 GeV

Δ

♦ LEP II constraints

MSSM searches: $e^+e^- \rightarrow \chi_1^0 \chi_2^0$ with $\chi_2^0 \rightarrow \chi_1^0 qq/\mu\mu/ee$ similar to $e^+e^- \rightarrow$ SA with $A \rightarrow Sqq/\mu\mu/ee$

E. Lundstrom, M. Gustafsson and J. Edsjo, 0810.3924

MSSM searches: $e^+e^- \rightarrow \chi_1^+ \chi_1^-$ similar to $e^+e^- \rightarrow H^+H^- \rightarrow m_{H\pm} \geq 70 \text{ GeV}$

S. Su

♦ LEP II constraints

MSSM searches: $e^+e^- \rightarrow \chi_1^0 \chi_2^0$ with $\chi_2^0 \rightarrow \chi_1^0 qq/\mu\mu/ee$ similar to $e^+e^- \rightarrow$ SA with $A \rightarrow Sqq/\mu\mu/ee$

MSSM searches: $e^+e^- \rightarrow \chi_1^+ \chi_1^-$ similar to $e^+e^- \rightarrow H^+H^-$

⇒ m_{H±} ≥ 70 GeV

Δ

♦ LEP II constraints

MSSM searches: $e^+e^- \rightarrow \chi_1^0 \chi_2^0$ with $\chi_2^0 \rightarrow \chi_1^0 qq/\mu\mu/ee$ similar to $e^+e^- \rightarrow$ SA with $A \rightarrow Sqq/\mu\mu/ee$

MSSM searches: $e^+e^- \rightarrow \chi_1^+ \chi_1^-$ similar to $e^+e^- \rightarrow H^+H^-$

→ m_{H±} ≥ 70 GeV

Δ

Electroweak Precision Test

→ Electroweak precision test

$$H_2 = \left(\frac{H^+}{(S+iA)/\sqrt{2}}\right)$$

Electroweak Precision Test

→ Electroweak precision test

$$H_2 = \left(\frac{H^+}{(S+iA)/\sqrt{2}}\right)$$

Dark matter relic density

• coannihilation of S, A

 $\delta_2=m_A-m_S$

• coannihilation of S, H[±]

 δ_1 = $m_{H\pm}$ - m_S

- Use MicrOMEGA /CalCHEP to calculate the relic density
 - → low mass region: m_S < 100 GeV</p>
 - ⇒ high mass region: m_S > 400 GeV

$\delta_1 = m_{H\pm} - m_S = 50 \text{ GeV}, \ \lambda_L = 0.01$

- $\delta_2 = m_A m_S = 10 \text{ GeV}$
- δ_2 = m_A - m_S = 7 GeV
- δ_2 = m_A - m_S = 5 GeV

S. Su

$\delta_1 = m_{H\pm} - m_S = 50 \text{ GeV}, \ \lambda_L = 0.01$

- $\delta_2 = m_A m_S = 10 \text{ GeV}$
- $\delta_2 = m_A m_S = 7 \text{ GeV}$
- δ_2 = m_A - m_S = 5 GeV

$\delta_1 = m_{H\pm} - m_S = 50 \text{ GeV}, \ \lambda_L = 0.01$

- $\delta_2 = m_A m_S = 10 \text{ GeV}$
- δ_2 = m_A - m_S = 7 GeV
- $\delta_2 = m_A m_S = 5 \text{ GeV}$

$\delta_1 = m_{H\pm} - m_S = 50 \text{ GeV}, \ \lambda_L = 0.01$

- $\delta_2 = m_A m_S = 10 \text{ GeV}$
- δ_2 = m_A - m_S = 7 GeV
- $\delta_2 = m_A m_S = 5 \text{ GeV}$

$\delta_1 = m_{H\pm} - m_S = 50 \text{ GeV}, \ \lambda_L = 0.01$

Viable region for relic density

	DM	SM h	ms	δ1, δ2	λι
(I)	low ms	low m _h	30 - 60 GeV	50 - 90 GeV	-0.2 to 0
(II)			60 - 80 GeV	at least one is large	-0.2 to 0.2
(III)		high m _h	50 - 75 GeV	large δ ₁ δ ₂ < 8 GeV	-1 to 3
(IV)			~ 75 GeV	large δ ₁ , δ ₂	-1 to 3
(V)	high ms	low m _h	500 - 1000 GeV	small δ ₁ , δ ₂	-0.2 to 0.3

Collider signatures

$$pp \rightarrow SA \rightarrow SSZ^{(*)}, SSW^{(*)}W^{(*)}$$

$$pp \to SH^{\pm} \to SSW^{(*)}, SSZ^{(*)}W^{(*)}$$

$$pp \to AH^{\pm} \to SSZ^{(*)}W^{(*)}, SSZ^{(*)}Z^{(*)}W^{(*)}, SSW^{(*)}W^{(*)}W^{(*)}$$

$$pp \to H^+H^- \to SSW^{(*)}W^{(*)}, SSW^{(*)}W^{(*)}Z^{(*)}, SSW^{(*)}W^{(*)}Z^{(*)}.$$

Signatures: jets + leptons + missing E_T

jets and leptons could be soft for small splittings

Leptonic signals

Focus on purely leptonic signals

single lepton: SH[±]

dilepton: SA, H⁺H⁻

• trilepton: AH±

Dominant background

• WW, ZZ/γ, WZ/γ, tt, ...

•

Benchmark points

	m _h (GeV)	ms (GeV)	(δ ₁ , δ ₂) (GeV)	λL
LH1	150	40	(100,100)	- 0.275
LH2	120	40	(70,70)	- 0.15
LH3	120	82	(50,50)	- 0.2
LH4	120	73	(10,50)	0
LH5	120	79	(50,10)	- 0.18
HH1	500	76	(250,100)	0
HH2	500	76	(200,30)	0

Dilepton signal from Z*

Dilepton signals:

Signal: $pp \rightarrow SA \rightarrow SSZ^{(*)} \rightarrow SSI^+I^-$

Two isolated opposite charge e or μ with missing E_T , no hard jets.

Background:

- from IDM pp→H+H-→SSW(*)W(*)→SSI+I-vv
- from SM
 - pp→WW→I+I-vv
 - pp→ZZ/y→l⁺l⁻vv
 - tt, WZ, Wt, Zt ... with missing lepton or jets

•LH1: $m_S = 40$ GeV, $(\delta_1, \delta_2) = (100, 100)$ GeV

Signal: pp→SA→SSZ→SSI⁺I⁻, I=e,µ

•LH1: $m_S = 40$ GeV, $(\delta_1, \delta_2) = (100, 100)$ GeV

Signal: pp→SA→SSZ→SSI⁺I⁻, I=e,µ

•LH1: $m_S = 40$ GeV, $(\delta_1, \delta_2) = (100, 100)$ GeV

Cuts

- $P_T^1 > 15 \text{ GeV}, |\eta_1| < 2.5$
- ΔR(II)>0.4
- no jets with P_Tⁱ>20 GeV,
 |η_j|<3
- ME_T > 100 GeV
- H_T > 200 GeV
- 80 GeV < M_{II} < 100 GeV

		I+II	1+11+111
S (fb)	SA	6.550	3.68
B (fb)	H+H-	0.496	0.040
	ww	345.1	12.41
	ZZ /γ	82.69	39.86
	tt	91.20	7.37
	WZ	104.35	37.55
	Wt	68.68	15.00
	total		102.18
L=100 fb ⁻¹		S/B	0.04
		s/√(B)	3.64 13

•LH4: $m_S = 73$ GeV, $(\delta_1, \delta_2) = (10,50)$ GeV

Signal: pp→SA→SSZ*→SSI⁺I⁻, I=e,µ

•LH4: $m_S = 73$ GeV, $(\delta_1, \delta_2) = (10,50)$ GeV

Signal: pp→SA→SSZ*→SSI⁺I⁻, I=e,μ

•LH4: $m_S = 73$ GeV, $(\delta_1, \delta_2) = (10,50)$ GeV

Signal: pp→SA→SSZ*→SSI⁺I⁻, I=e,μ

•LH4: $m_S = 73$ GeV, $(\delta_1, \delta_2) = (10,50)$ GeV

Signal: pp→SA→SSZ*→SSI⁺I⁻, I=e,µ

•LH4: $m_S = 73$ GeV, $(\delta_1, \delta_2) = (10,50)$ GeV

Signal: pp→SA→SSZ*→SSI⁺I⁻, I=e,μ

•LH4: $m_S = 73$ GeV, $(\delta_1, \delta_2) = (10,50)$ GeV

Cuts

- P_T¹>15 GeV, |η₁|<2.5
- ΔR(II)>0.4
- no jets with P_Tⁱ>20 GeV,
 |η_j|<3
- ME_T>90 GeV
- H_T > 200 GeV
- 20 GeV< M_{II} < 50 GeV
- cos(φ_{II})>0.7
- ΔR(II)<0.8

		I+II	I+II+III
S (fb)	SA	2.48	0.22
B (fb)	H+H-	<0.0001	<0.001
	WW	345.14	0.04
	ZZ /y	82.69	0.16
	tt	91.20	0.09
	WZ	104.35	0.07
	Wt	68.68	0.09
	total		0.47
L=100 fb ⁻¹		S/B	0.47
		s/√(B)	3.23 16

• LH2: $m_S = 40$ GeV, $(\delta_1, \delta_2) = (70,70)$ GeV

Cuts

- P_T¹>15 GeV, |η₁|<2.5
- ΔR(II)>0.4
- no jets with P_Tⁱ>20 GeV,
 |η_i|<3
- ME_T >50 GeV
- H_T > 150 GeV
- M_{II} < 70 GeV
- cos(φ_{II})>0.7
- ΔR(II)<1.2

		I+II	1+11+111
S (fb)	SA	7.392	0.97
B (fb)	H+H-	0.568	<0.001
	ww	345.1	0.09
	ZZ /γ	82.69	0.28
	tt	91.20	0.23
	WZ	104.35	0.14
	Wt	68.68	0.13
	total		0.88
L=100 fb ⁻¹		S/B	1.11
		s/√(B)	10.37

•LH5: $m_S = 79$ GeV, $(\delta_1, \delta_2) = (50,10)$ GeV

Signal: pp→SA→SSZ*→SSI⁺I⁻, I=e,μ

Soft leptons. Difficult.

Collider reach @ LHC

pp→SA→SSZ^(*)→SSI⁺I⁻

	ms	(δ ₁ , δ ₂)	S	В	S/B	S/√(B)
	GeV	GeV	fb	fb	L=	100 fb ⁻¹
LH1	40	(100,100)	3.68	102.18	0.04	3.64
LH2	40	(70,70)	0.97	0.88	1.11	10.37
LH3	82	(50,50)	0.19	0.47	0.40	2.75
LH4	73	(10,50)	0.22	0.47	0.47	3.23
LH5	79	(50,10)	0.33	0.30	0.09	0.52
HH1	76	(250,100)	0.69	27.17	0.03	1.33
HH2	76	(200,30)	1.22	27.65	0.04	2.32

Collider reach @ LHC

pp→SA→SSZ^(*)→SSI⁺I⁻

	ms	(δ_1, δ_2)	S	В	S/B	S/√(B)
	GeV	GeV	fb	fb	L=	100 fb ⁻¹
LH1	40	(100,100)	3.68	102.18	0.04	3.64
LH2	40	(70,70)	0.97	0.88	1.11	10.37
LH3	82	(50,50)	0.19	0.47	0.40	2.75
LH4	73	(10,50)	0.22	0.47	0.47	3.23
LH5	79	(50,10)	0.33	0.30	0.09	0.52
HH1	76	(250,100)	0.69	27.17	0.03	1.33
HH2	76	(200,30)	1.22	27.65	0.04	2.32

Collider reach @ LHC

pp→SA→SSZ^(*)→SSI⁺I⁻

	ms	(δ_1, δ_2)	S	В	S/B	S/√(B)
	GeV	GeV	fb	fb	L=	100 fb ⁻¹
LH1	40	(100,100)	3.68	102.18	0.04	3.64
LH2	40	(70,70)	0.97	0.88	1.11	10.37
LH3	82	(50,50)	0.19	0.47	0.40	2.75
LH4	73	(10,50)	0.22	0.47	0.47	3.23
LH5	79	(50,10)	0.33	0.30	0.09	0.52
HH1	76	(250,100)	0.69	27.17	0.03	1.33
HH2	76	(200,30)	1.22	27.65	0.04	2.32

Conclusions

- Fig. 1DM: provide a scalar WIMP dark matter candidate
- Viable regions of parameter spaces provide correct relic density

	DM	SM h	ms	δ ₁ , δ ₂	λ∟
(I)	low ms	low m _h	30 - 60 GeV	50 - 90 GeV	-0.2 to 0
(II)			60 - 80 GeV	at least one is large	-0.2 to 0.2
(III)		high m _h	50 - 75 GeV	large δ ₁ δ ₂ < 8 GeV	-1 to 3
(IV)			~ 75 GeV	large δ ₁ , δ ₂	-1 to 3
(V)	high m _S	low m _h	500 - 1000 GeV	small δ ₁ , δ ₂	-0.2 to 0.3

Rich collider phenomenology

* dilepton signal (from SA) observable for not too small δ_2 .