INTRO to LOW-SCALE TECHNICOLOR Kenneth Lane, Boston University

(with Estia Eichten, Adam Martin and others)

- ETC problem: FCNC's: $M_{ETC} \gtrsim 1000 \text{TeV}$ $\Longrightarrow m_q \sim \text{MeV}, \ M_{\pi_T} \sim \text{GeV}:$ Cured by $\underline{walking}$ TC gauge coupling! $(\alpha_{TC}(IRFP) = \alpha_{TC}(\chi SB) + \epsilon$ $\Longrightarrow \beta(\alpha_{TC}) \simeq 0 \text{ from } \Lambda_{TC} \text{ to } \lesssim M_{ETC})$ WTC $\Longrightarrow \text{enhanced } \langle \bar{T}T \rangle_{ETC} \text{ and } M_{\pi_T}.$
- TC problem: S > 0, $\mathcal{O}(1)$:

 Possibly cured by <u>walking</u> α_{TC} .

 WTC \Longrightarrow usual (QCD-based) assumptions for S are **wrong!**WTC suggests <u>towers</u> of I = 1 ρ_T and a_T extending up to ... ?

• Walking TC <u>strongly</u> suggests $N_D \gg 1$.

$$\implies$$
 (e.g.) $F_T = 246\,{
m GeV}/\sqrt{N_D} \lesssim 100\,{
m GeV}$

$$\implies$$
 Many π_T and many ρ_T , a_T , ω_T Focus on the lightest!

- $F_T \lesssim 100 \, \mathrm{GeV} \Rightarrow \mathrm{expect} \ M_{\pi_T} \simeq 100 400 \, \mathrm{GeV}$
- WTC enhancement of $M_{\pi_T} \Longrightarrow \underline{M_{\rho_T}} \lesssim 2M_{\pi_T}$!!! $\Longrightarrow M_{\rho_T}, M_{\omega_T} \simeq 200 700 \, \text{GeV}$ And ρ_T, ω_T are **very narrow!!**
- New observation from S: a_T is likely light, $M_{a_T} \simeq M_{\rho_T}$, within reach if ρ_T , ω_T are!

⇒ MANY striking experimental consequences at Tevatron and LHC!

IF LSTC is responsible for EWSB — It may be found at the Tevatron! It can & will be found at the LHC!

 $ho_T^{\pm,0}(I=1),\; \omega_T^0(I=0),\; a_T^{\pm,0}(I=1)$ are produced via the Drell-Yan VMD process:

$$\bar{q}q \rightarrow \gamma, Z^0, W^{\pm} \rightarrow \rho_T, \, \omega_T, \, a_T \rightarrow \mathbf{WHAT???}$$

• WTC, S

$$\Longrightarrow$$
 lightest M_{ρ_T} , M_{ω_T} , $M_{a_T} \lesssim 2M_{\pi_T}$

 $\implies \rho_T \to \pi_T \, \pi_T$ likely CLOSED!

 $\Longrightarrow \omega_T, \ a_T \to \pi_T \, \rho_T, \ 3\pi_T \ \text{definitely CLOSED!}$

HOW do ρ_T , ω_T , a_T DECAY?

Most likely LSTC observation channels:

Process	Tevatron	LHC \gtrsim 10 TeV
$\omega_T ightarrow \gamma \pi_T^0 ightarrow \gamma \overline{b} b$?	??
$\bullet \qquad \rightarrow \gamma Z^{0} \rightarrow \gamma \ell^{+} \ell^{-}$??	Y
$\rightarrow \ell^+\ell^-$	Y	Y
$ ho_T^0 o W^\pm \pi_T^\mp o \ell^\pm b \overline{q}$	Y	N
$W^+W^- ightarrow \ell^\pm u_\ell j j$?	??
$ ightarrow \gamma \pi_T^0 ightarrow \gamma \overline{b} b$?	??
$\rightarrow \ell^+\ell^-$?	?
$ ho_T^\pm o W^\pm \pi_T^0 o \ell^\pm u_\ell \overline{b} b$	Y	N
$\to Z^0\pi_T^{\pm 1} \to \ell^+\ell^-b\bar{q}$?	Y
$\bullet \longrightarrow W^{\pm} Z^{0} \longrightarrow \ell^{\pm} \nu_{\ell} \ell^{+} \ell^{-}$?	Y
$ o \gamma \pi_T^\pm o \gamma b ar q$?	??
$ ightarrow \gamma W^{\pm} ightarrow \gamma \ell^{\pm} u_{\ell}$?	Y?
$a_T^0 o W^\pm \pi_T^\mp o \ell^\pm u_\ell b \overline{q}$	Y	?
$ ightarrow W^\pm W^\mp ightarrow \ell^\pm u_\ell j j$?	??
$ullet$ $\rightarrow \ell^+\ell^-$	Y?	Y
$a_T^{\pm} ightarrow \gamma \pi_T^{\pm} ightarrow \gamma b \overline{q}$?	??
$ullet$ $ o \gamma W^\pm o \gamma \ell^\pm u_\ell$?	Y
$\rightarrow Z^0 \pi_T^{\pm} \rightarrow \ell^+ \ell^- b \overline{q}$?	Y
$\rightarrow W^{\pm}Z^{0} \rightarrow \ell^{\pm}\nu_{\ell}\ell^{+}\ell^{-}$?	Y?

 $\overline{Y} = Yes$, for a range of masses and nominal parameters

Y? = Maybe, needs more study

N = No, probably because of backgrounds

? = Needs more study

 $?? = Y? - \epsilon$