
Parallel ROOT Facility
Status and Plans

Fons Rademakers

Application Area Internal Review

Outline of Presentation

• PROOF motivation

• PROOF features and status

• PROOF testing and deployment

• PROOF development plans

• Conclusions

2

The PROOF Team

• Maarten Ballintijn

• Bertrand Bellenot

• Leandro Franco

• Gerri Ganis

• Jan Iwaszkiewicz

• Andreas Peters

• Fons Rademakers

3

• Typical HEP analysis needs a continuous
algorithm refinement cycle

Motivation

Implement algorithm

Run over data set

Make improvements

4

HEP Final Analysis

• Ranging from I/O bound to CPU bound

• Need many disks to get the needed I/O rate

• Need memory to cache as much as possible

• Need many CPUs for processing

5

Data Analysis Hardware

• Aim for the highest possible I/O rate per CPU

• Use local disks or make sure to have high
bandwidth to remote storage

• A good amount of RAM for efficient data
caching

6

Some ALICE Numbers

• 1.5 PB of raw data per year

• 360 TB of ESD+AOD per year (20% of raw)

• One pass using 400 disks at 15 MB/s will
take 16 hours

• Using parallelism is the only way to analyze
this amount of data in a reasonable amount
of time

7

PROOF Design Goals

• System for running ROOT queries in parallel
on a large number of distributed computers

• PROOF is designed to be a transparent,
scalable and adaptable extension of the local
interactive ROOT analysis session

• Extends the interactive model to long
running “interactive batch” queries

8

Where to Use PROOF

• Central Analysis Facility (CAF)

• Departmental workgroups (Tier-2’s)

• Multi-core, multi-disk desktops (Tier-3/4’s)

9

The ROOT Data Model
Trees & Selectors

preselection analysis
Ok

Output list

Process()

Branch

Branch

Branch

BranchLeaf Leaf

Leaf Leaf Leaf

Leaf Leaf

Event n
Read needed

parts only

Chain

Loop over events

1 2 n last

Terminate()
- Finalize analysis

 (fitting, ...)

Begin()
- Create histograms
- Define output list

The PROOF Approach
File catalog

Master

Scheduler

Storage

CPU’s

Query

PROOF query:
data file list, mySelector.C

Feedback,
merged final output

PROOF cluster

• Cluster perceived as extension of local PC
• Same macro and syntax as in local session

• More dynamic use of resources
• Real-time feedback
• Automatic splitting and merging

11

Multi-Tier Architecture
Adapts to wide

area virtual
clusters

Geographically
separated domains,

heterogeneous
machines

Network performance
Less important VERY important

Optimize for data locality or high bandwidth data server access

12

TSelector - User Code
// Abbreviated version
class TSelector : public TObject {
protected:
 TList *fInput;
 TList *fOutput;
public
 void Init(TTree*);
 void Begin(TTree*);
 void SlaveBegin(TTree *);
 Bool_t Process(int entry);
 void SlaveTerminate();
 void Terminate();
};

13

TSelector::Process()

14

 ...
 ...
 // select event
 b_nlhk->GetEntry(entry); if (nlhk[ik] <= 0.1) return kFALSE;
 b_nlhpi->GetEntry(entry); if (nlhpi[ipi] <= 0.1) return kFALSE;
 b_ipis->GetEntry(entry); ipis--; if (nlhpi[ipis] <= 0.1) return kFALSE;
 b_njets->GetEntry(entry); if (njets < 1) return kFALSE;

 // selection made, now analyze event
 b_dm_d->GetEntry(entry); //read branch holding dm_d
 b_rpd0_t->GetEntry(entry); //read branch holding rpd0_t
 b_ptd0_d->GetEntry(entry); //read branch holding ptd0_d

 //fill some histograms
 hdmd->Fill(dm_d);
 h2->Fill(dm_d,rpd0_t/0.029979*1.8646/ptd0_d);
 ...
 ...

The Packetizer
• The packetizer is the heart of the system

• It runs on the master and hands out work to the workers

• Different packetizers allow for different data access policies

• All data on disk, allow network access

• All data on disk, no network access

• Data on mass storage, go file-by-file

• Data on Grid, distribute per Storage Element

• Current packetizer uses fixed number of event per packet

15

PROOF Scalability
• CAF, 4 dual Xeon machines

• CMS selector, 120 MB data (290 files), distributed on the 4 machines

• Strictly concurrent user sessions (100% CPU used)

1 user

2 users

4 users

8 users

• No inefficiencies introduced by PROOF internals

16

Some More Test Results
• 90 nodes
• 2 CPU Xeon 3.2 GHz
• 480 GB SATA disk
• Non-blocking GB Eth
• 1 master, 80 slaves
• 10K events per node, 1.4 GB

• On 1 CPU about 4 hours
• On 80 CPUs about 4 min

From I. Gonzalez, Univ. de Cantabria

17

Some More Test Results
• 90 nodes
• 2 CPU Xeon 3.2 GHz
• 480 GB SATA disk
• Non-blocking GB Eth
• 1 master, 80 slaves
• 10K events per node, 1.4 GB

• On 1 CPU about 4 hours
• On 80 CPUs about 4 min

From I. Gonzalez, Univ. de Cantabria

17

Production Usage in
Phobos

18

Interactive Batch

• Allow submission of long running queries

• Allow client/master disconnect, reconnect

• Allow interaction and feedback at any time
during the processing

19

Analysis Scenario

AQ1: 1s query produces a local histogram
AQ2: a 10m query submitted to PROOF1
AQ3 - AQ7: short queries
AQ8: a 10h query submitted to PROOF2

BQ1: browse results of AQ2
BQ2: browse intermediate results of AQ8
AQ3 - AQ6: submit 4 10m queries to PROOF1

CQ1: browse results of AQ8, BQ3 - BQ6

Monday at 10:15
ROOT session on

my laptop

Monday at 16:25
ROOT session on

my desktop

Wednesday at
8:40

Browse from any
web browser

20

New xrootd Based
Connection Layer

• Interactive batch requires a coordinator on the server side

• Use xrootd

• Light weight, industrial strength, networking and protocol
handler

• New PROOF protocol, xpd, implemented as a plug-in

• Plug-in launches and controls PROOF sessions

• Disconnect / reconnect handled naturally

• Can use the same daemon for data and PROOF serving

21

Management Tools
• Data sets

• Distribution of data files on the PROOF cluster

• By direct upload

• By staging out from mass storage (e.g. CASTOR)

• Query results

• Retrieve and archive

• Packages

• Optimized upload of additional libraries needed by the
analysis

22

• Open/close sessions

• Define a chain

• Submit a query,
execute a command

• Query editor

• Online monitoring of feedback histograms

• Browse folders with query results

• Retrieve, archive and delete query results

Session Viewer GUI

23

Monitoring

• MonALISA based monitoring

• Each host reports to MonALISA

• Each proofserv reports to MonALISA

• Internal monitoring

• File access rate, packet generation time
and latency, processing time, etc.

• Produces a tree for further analysis

24

Host Monitoring

The same for CPU, memory, swap, network, ...
25

Query Monitoring

The same for: CPU usage, cluster usage, memory, event rate,
local/remote MB/s and files/s

26

Network Traffic

Diagonal elements: local traffic (TFile), other elements: network traffic(TXNetFile)

27

Deployment and Testing

• Working intensively with ALICE to test
performance and functionality of PROOF on
the CERN CAF

• CMS has shown interest and wishes to test
PROOF by the end of the year

28

ALICE CAF Test Setup

• Since May evaluation of CAF test setup

• 33 machines, 2 CPUs each, 200 GB disk

• Tests performed

• Usability tests

• Simple speedup plot

• Evaluation of different query types

• Evaluation of the system when running a combination of
query types

• Work done for ALICE by Jan Fiete Grosse-Oetringhaus

29

File Distribution

• The files have been distributed using xrootd

• All were copied to the redirector machine that
redistributed them over the cluster

• xrootd tries to distribute the files evenly, but some
nodes host more files than others (difference up to 50%)

• We did not correct because this is a realistic scenario
for analysis

• For each query we selected files at random between
those available

• PROOF favors local files over remote files

30

Simple Speedup
• One query to an empty CAF
• Each query processes at least
 10min to minimize overhead
• Different data files used per query
 to avoid caching

• Breakdown in parallelism was
 initially puzzling

31

Understanding Speedup

32

Query Types

Type # files # evt
processed
 data (GB)

avg. time *
(s)

I/O rate
(MB/s)

submission
interval (s)

VeryShort 20 2K 0.4 9 ± 1 44.4 30 ± 15

Short 20 40K 8 150 ± 10 53.3 120 ± 30

Medium 150 300K 60 1380 ± 60 43.5 300 ± 120

Long 500 1M 200 4500 ± 200 44.4 600 ± 120

* Using PROOF, 10 users, 10 parallel workers each
33

Query Type Cocktail

• 4 different query types

• 20% very short queries

• 40% short queries

• 20% medium queries

• 20% long queries

• User mix

• 33 nodes

• 10 users, 10 or 30 workers/user, max ave. speedup = 6.6

• 5 users, 20 workers/user

• 15 users, 7 workers/user

34

Time Evolution
Single Worker

• Even distribution of files,
 i.e. 1/33 are local
• Second query faster because
 the files are cached in the
 machines serving the files

35

Time Evolution
Multiple Workers

36

Relative Speedup

37

Average expected speedup

Relative Speedup

38

Average expected speedup

Cluster Efficiency

39

Development Plans
• Improve packetizer

• Constant time per packet, smaller packets at end of query

• Dynamic cluster configuration

• Come and go of worker nodes

• Improve handling of error conditions

• Support multiple server versions

• Data access optimization

• Multi-user scheduling

• GUI improvements

• Generic processing

• Testing and consolidation

40

Data Access
Optimizations

• Low latency data access is essential

• Reduce file opening overhead by using asynchronous open

• Reduce data access latency by using:

• Tree branch read-ahead and caching

• Asynchronous reading

• Asynchronous data decompression

41

Multi-User Scheduling

• Scheduler is needed to control the use of available
resources in multi-user environments

• Decisions taken per query based on the following metric:

• Overall cluster load

• Resources needed by the query

• User history and priorities

• Requires dynamic cluster reconfiguration

• Generic interface to external schedulers planned (Condor,
LSF, ...)

42

Conclusions

• PROOF promises to become a powerful tool for
the efficient analysis of large data sets in the era of
large clusters and multi-core CPUs

• Exciting development plans to increase the
efficiency of the system and improve the user
experience

• First results in the ALICE environment look good,
first users will be exposed to the system soon,
ALICE will follow the developments aggressively

43

