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• Typical HEP analysis needs a continuous 
algorithm refinement cycle

Motivation

Implement algorithm

Run over data set

Make improvements
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HEP Final Analysis

• Ranging from I/O bound to CPU bound

• Need many disks to get the needed I/O rate

• Need memory to cache as much as possible

• Need many CPUs for processing

5



Data Analysis Hardware

• Aim for the highest possible I/O rate per CPU

• Use local disks or make sure to have high 
bandwidth to remote storage

• A good amount of RAM for efficient data 
caching
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Some ALICE Numbers

• 1.5 PB of raw data per year

• 360 TB of ESD+AOD per year (20% of raw)

• One pass using 400 disks at 15 MB/s will 
take 16 hours

• Using parallelism is the only way to analyze 
this amount of data in a reasonable amount 
of time
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PROOF Design Goals

• System for running ROOT queries in parallel 
on a large number of distributed computers

• PROOF is designed to be a transparent, 
scalable and adaptable extension of the local 
interactive ROOT analysis session

• Extends the interactive model to long 
running “interactive batch” queries
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Where to Use PROOF

• Central Analysis Facility (CAF)

• Departmental workgroups (Tier-2’s)

• Multi-core, multi-disk desktops (Tier-3/4’s)
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The ROOT Data Model
Trees & Selectors
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The PROOF Approach
File catalog

Master

Scheduler

Storage

CPU’s

Query

PROOF query:
data file list, mySelector.C

Feedback,
merged final output

PROOF cluster

•  Cluster perceived as extension of local PC
•  Same macro and syntax as in local session

•  More dynamic use of resources
•  Real-time feedback
•  Automatic splitting and merging
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Multi-Tier Architecture
Adapts to wide 

area virtual 
clusters

Geographically 
separated domains, 

heterogeneous 
machines

Network performance
Less important VERY important

Optimize for data locality or high bandwidth data server access
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TSelector - User Code
// Abbreviated version
class TSelector : public TObject {
protected:
    TList *fInput;
    TList *fOutput;
public
    void   Init(TTree*);  
    void   Begin(TTree*);
    void   SlaveBegin(TTree *);
    Bool_t Process(int entry);
    void   SlaveTerminate();
    void   Terminate();
};
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TSelector::Process()
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   ...
   ...
   // select event
   b_nlhk->GetEntry(entry);         if (nlhk[ik] <= 0.1)    return kFALSE;
   b_nlhpi->GetEntry(entry);        if (nlhpi[ipi] <= 0.1)  return kFALSE;
   b_ipis->GetEntry(entry); ipis--; if (nlhpi[ipis] <= 0.1) return kFALSE;
   b_njets->GetEntry(entry);        if (njets < 1)          return kFALSE;
   
   // selection made, now analyze event
   b_dm_d->GetEntry(entry);         //read branch holding dm_d
   b_rpd0_t->GetEntry(entry);       //read branch holding rpd0_t
   b_ptd0_d->GetEntry(entry);       //read branch holding ptd0_d

   //fill some histograms
   hdmd->Fill(dm_d);
   h2->Fill(dm_d,rpd0_t/0.029979*1.8646/ptd0_d);
   ...
   ...



The Packetizer
• The packetizer is the heart of the system

• It runs on the master and hands out work to the workers

• Different packetizers allow for different data access policies

• All data on disk, allow network access

• All data on disk, no network access

• Data on mass storage, go file-by-file

• Data on Grid, distribute per Storage Element

• Current packetizer uses fixed number of event per packet
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PROOF Scalability
• CAF,  4 dual Xeon machines

• CMS selector, 120 MB data (290 files), distributed on the 4 machines

• Strictly concurrent user sessions (100% CPU used)

1 user

2 users

4 users

8 users

•    No inefficiencies introduced by PROOF internals
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Some More Test Results
• 90 nodes
• 2 CPU Xeon 3.2 GHz
• 480 GB SATA disk
• Non-blocking GB Eth
• 1 master, 80 slaves
• 10K events per node, 1.4 GB

• On 1 CPU about 4 hours
• On 80 CPUs about 4 min

From I. Gonzalez, Univ. de Cantabria
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Production Usage in 
Phobos
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Interactive Batch

• Allow submission of long running queries

• Allow client/master disconnect, reconnect

• Allow interaction and feedback at any time 
during the processing
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Analysis Scenario

AQ1: 1s query produces a local histogram
AQ2: a 10m query submitted to PROOF1
AQ3 - AQ7: short queries
AQ8: a 10h query submitted to PROOF2

BQ1: browse results of AQ2
BQ2: browse intermediate results of AQ8
AQ3 - AQ6: submit 4 10m queries to PROOF1

CQ1: browse results of AQ8, BQ3 - BQ6

Monday at 10:15
ROOT session on 

my laptop

Monday at 16:25
ROOT session on 

my desktop

Wednesday at 
8:40

Browse from any 
web browser
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New xrootd Based 
Connection Layer

• Interactive batch requires a coordinator on the server side

• Use xrootd

• Light weight, industrial strength, networking and protocol 
handler

• New PROOF protocol, xpd, implemented as a plug-in

• Plug-in launches and controls PROOF sessions

• Disconnect / reconnect handled naturally

• Can use the same daemon for data and PROOF serving
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Management Tools
• Data sets

• Distribution of data files on the PROOF cluster

• By direct upload

• By staging out from mass storage (e.g. CASTOR)

• Query results

• Retrieve and archive

• Packages

• Optimized upload of additional libraries needed by the 
analysis
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• Open/close sessions

• Define a chain

• Submit a query,
execute a command

• Query editor

• Online monitoring of feedback histograms

• Browse folders with query results

• Retrieve, archive and delete query results

Session Viewer GUI
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Monitoring

• MonALISA based monitoring

• Each host reports to MonALISA

• Each proofserv reports to MonALISA

• Internal monitoring

• File access rate, packet generation time 
and latency, processing time, etc.

• Produces a tree for further analysis
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Host Monitoring

The same for CPU, memory, swap, network, ...
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Query Monitoring

The same for: CPU usage, cluster usage, memory, event rate,
local/remote MB/s and files/s
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Network Traffic

Diagonal elements: local traffic (TFile), other elements: network traffic(TXNetFile)
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Deployment and Testing

• Working intensively with ALICE to test 
performance and functionality of PROOF on 
the CERN CAF

• CMS has shown interest and wishes to test 
PROOF by the end of the year  

28



ALICE CAF Test Setup

• Since May evaluation of CAF test setup

• 33 machines, 2 CPUs each, 200 GB disk

• Tests performed

• Usability tests

• Simple speedup plot

• Evaluation of different query types

• Evaluation of the system when running a combination of 
query types

• Work done for ALICE by Jan Fiete Grosse-Oetringhaus
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File Distribution

• The files have been distributed using xrootd

• All were copied to the redirector machine that 
redistributed them over the cluster

• xrootd tries to distribute the files evenly, but some 
nodes host more files than others (difference up to 50%)

• We did not correct because this is a realistic scenario 
for analysis

• For each query we selected files at random between 
those available

• PROOF favors local files over remote files
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Simple Speedup
• One query to an empty CAF
• Each query processes at least
  10min to minimize overhead
• Different data files used per query
   to avoid caching

• Breakdown in parallelism was
   initially puzzling
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Understanding Speedup
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Query Types

Type # files # evt
processed
 data (GB)

avg. time *
(s)

I/O rate
(MB/s)

submission
interval (s)

VeryShort 20 2K 0.4 9 ± 1 44.4 30 ± 15

Short 20 40K 8 150 ± 10 53.3 120 ± 30

Medium 150 300K 60 1380 ± 60 43.5 300 ± 120

Long 500 1M 200 4500 ± 200 44.4 600 ± 120

* Using PROOF, 10 users, 10 parallel workers each
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Query Type Cocktail

• 4 different query types

• 20% very short queries

• 40% short queries

• 20% medium queries

• 20% long queries

• User mix

• 33 nodes

• 10 users, 10 or 30 workers/user, max ave. speedup = 6.6

• 5 users, 20 workers/user

• 15 users, 7 workers/user
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Time Evolution
Single Worker

• Even distribution of files,
   i.e. 1/33 are local
• Second query faster because
   the files are cached in the
   machines serving the files
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Time Evolution
Multiple Workers
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Relative Speedup
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Average expected speedup



Relative Speedup
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Average expected speedup



Cluster Efficiency
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Development Plans
• Improve packetizer

• Constant time per packet, smaller packets at end of query

• Dynamic cluster configuration

• Come and go of worker nodes

• Improve handling of error conditions

• Support multiple server versions

• Data access optimization

• Multi-user scheduling

• GUI improvements

• Generic processing

• Testing and consolidation
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Data Access 
Optimizations

• Low latency data access is essential

• Reduce file opening overhead by using asynchronous open

• Reduce data access latency by using:

• Tree branch read-ahead and caching

• Asynchronous reading

• Asynchronous data decompression
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Multi-User Scheduling

• Scheduler is needed to control the use of available 
resources in multi-user environments

• Decisions taken per query based on the following metric:

• Overall cluster load

• Resources needed by the query

• User history and priorities

• Requires dynamic cluster reconfiguration

• Generic interface to external schedulers planned (Condor, 
LSF, ...)
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Conclusions

• PROOF promises to become a powerful tool for 
the efficient analysis of large data sets in the era of 
large clusters and multi-core CPUs

• Exciting development plans to increase the 
efficiency of the system and improve the user 
experience

• First results in the ALICE environment look good, 
first users will be exposed to the system soon, 
ALICE will follow the developments aggressively
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