

ROOT Mathematical Libraries

A. Kreshuk, L. Moneta, E. Offermann

CERN/PH-SFT

LCG AA Internal Review, 18 September 2006

Root Math Work Package

- → Work package formed with ROOT-SEAL merge
- Main responsibilities for this work package:
 - Basic mathematical functions
 - + Numerical algorithms
 - + Random numbers
 - + Linear algebra
 - + Physics and geometry vectors (3D and 4D)
 - + Fitting and minimization
 - + Histograms (math and statistical part)
 - + Statistics (confidence levels, multivariate analysis)

Outline

- New ROOT Math Libraries: MathCore and MathMore
 - → Physics and vector package (GenVector)
 - → SMatrix package
 - mathematical functions and numerical algorithms
- Fitting and Minimization
 - → new C++ Minuit (Minuit2)
 - + Linear and robust fitter
 - plans for new fitting classes
 - fitting GUI (new fit panel)
- Other recent developments:
 - + improvements in random numbers
 - → Histogram comparison
 - + TMVA (multivariate analysis)
 - + FFT, SPlot
- → Future plans

ROOT Math Libraries

Histogram library
TH1 TF1

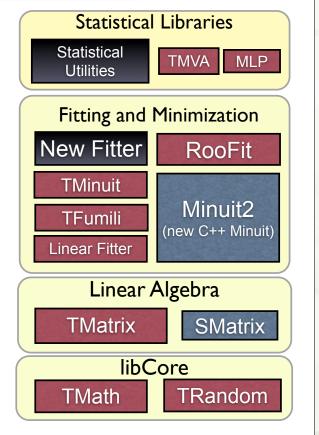
MathMore

Random Numbers

Extra algorithms

Extra Math functions

GSL and more


MathCore

Function interfaces

Physics Vectors

Basic algorithms

Basic Math functions

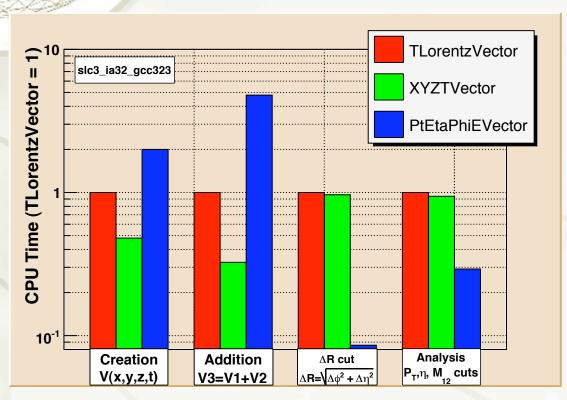
not yet released

with dependency

no dependency

Packages and Dictionaries 🥕

- MathCore, MathMore, SMatrix and Minuit2 can be released and built as independent components
 - + MathMore requires GSL and released with GPL license
 - + use autoconf/automake/libtool to configure and build
- → Libraries built outside ROOT (with auto-tools) do not provide the CINT dictionary
- → For template classes (like GenVector and SMatrix) the dictionary is provided for the most used types
 - + double, float and Double32_t
 - + dictionary is the dominant part of the library
 - → 2 Mb on Linux of a 2.3 Mb library for MathCore


Physics and Geometry Vectors

- Classes for 3D and 4D vectors with their operations and transformations (rotations)
 - + functionality as in CLHEP *Vector* and *Geometry* packages
- → Work done in collaboration with Fermilab computing group (M. Fischler, W. Brown and J. Marraffino)
- Main features of the new classes:
 - + generic scalar contained type
 - + i.e. single or double precision
 - → generic coordinate system concept
 - → i.e. cartesian, polar and cylindrical
- Used now by CMS and LHCb

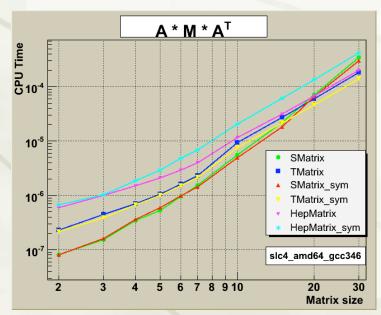
GenVector Performances

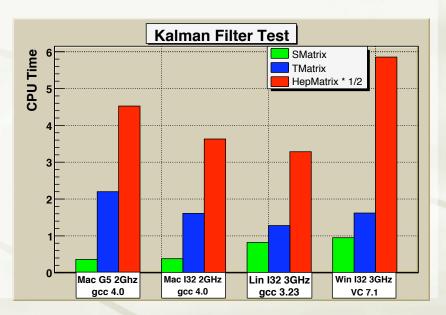
◆Optimal run-time performance

- no virtual calls and use of inline methods
- user can choose best coordinate system

SMatrix Package

- * Package initially developed by T. Glebe for HeraB
- Matrix and vector classes of arbitrary type
- * For fixed (not dynamic) matrix and vector sizes:


```
SMatrix< double, 2 , 5>
SVector< double, 5 >
```


- → Complementary and NOT a replacement of TMatrix
- → Optimized for small matrix sizes:
 - + use expression templates to avoid temporaries
- → Support for symmetric matrices (thanks to J.Palacios, LHCb)
 - + storage of only n* (n+1) /2 elements
- Support for basic operations and matrix inversion
 - + not full linear algebra functionality
- + Used by LHCb, CMS and now ATLAS

SMatrix Performances

- Comparison ROOT (TMatrix/SMatrix) and CLHEP (HepMatrix)
 - * CPU performances in matrix operations varying the sizes
 - ◆ CPU performances in the Kalman filter update equations
 - → sizes: 2x2, 2x5, 5x5 with addition, multiplication and inversion
 - ◆ Useful exercise also for TMatrix (achieved substantial improvements)

Mathematical Functions

- Special Functions:
 - use interface proposed to C++ standard:
 double cyl bessel i (double nu, double x);
 - + large variety of functions complementing what exists in TMath
- Statistical Functions:
 - Probability density functions (pdf)
 - + Cumulative distributions (lower tail and upper tail)
 - → Inverse of cumulative distributions
 - Coherent naming scheme. Example chi2:
 chisquared_pdf
 chisquared_prob, chisquared_quant,
 chisquared prob inv, chisquare quant inv

Numerical Algorithms

- C++ interface to GSL numerical algorithms
- Have now in the MathMore library algorithms for 1D functions:
 - + Numerical Derivation
 - → central evaluation (5 points rule) and forward/backward
 - + Numerical Integration
 - → adaptive integration for finite and infinite intervals
 - + Root Finders
 - bracketing and polishing algorithms using derivatives
 - + Interpolation
 - + linear, polynomial and Akima spline
 - + Chebyshev polynomials (for function approximation)

Function Interface

- Minimal interface used by all numerical algorithms:
- * abstract classes (IGenFunction and IParamFunction)
- → template wrappedFunction class to wrap any C++
 callable object (functors, C free function, etc..)
- set of pre-defined parametric functions (Polynomial)

IGenFunction +value: double +Gradient: double +Clone: IGenFunction*

WrappedFunction<CALLABLE>

-fFunc: CALLABLE

+value: double

+Clone: WrappedFunction*

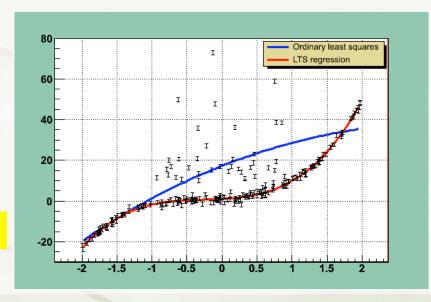
IParamFunction

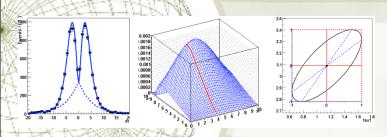
+ SetParameters:void

+Parameters: std::vector<double>

+ParameterGradient: std::vector<double>

Fitting and Minimization


- ◆New C++ version of Minuit (Minuit2) in ROOT v5.08
 - * adapted SEAL packages to ROOT coding convention
 - → implemented a ROOT fitter interface (TVirtualFitter)
- Same basic functionality as in old version
 - + Migrad, Simplex, Minos algorithms
- + Extended functionality:
 - single side parameter limits
 - + added Fumili method for Chi2 and likelihood fits
- + 00 package for generic function minimization
 - + easy to extend by inserting new minimization algorithms
 - plan to add constrained minimization



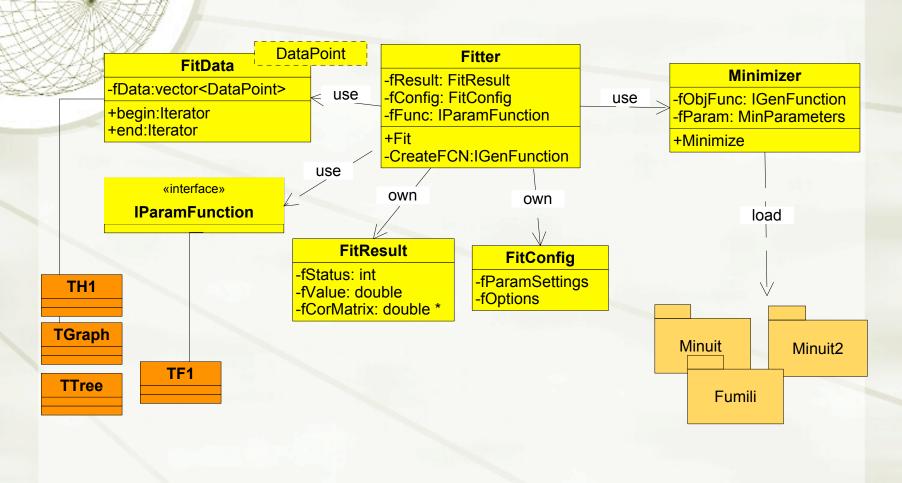
Linear and Robust Fitter

- TLinearFitter class to fit function linear in the parameters (e.g Polynomial)
 - + direct solution by solving a linear system
 - + can be 10-15 times faster than Minuit
- Robust Fitting
 - + outliers removal
 - + use of Least TrimmedSquare (LTS) regression

Graph.Fit("pol3", "rob=0.75", -2, 2);

RooFit

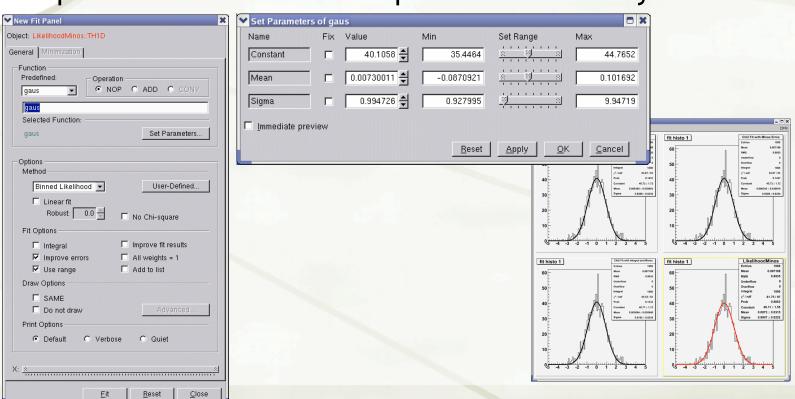
- *RooFit package added in ROOT version 5
 - + developed in BaBar (V. Werkerke and D. Kirkby)
 - + fitting framework for sophisticated fitting
 - support for various fitting methods
 - → based on TMinuit
 - + 00 description of p.d.f.
 - → addition, convolution, automatic normalization
 - → provides extra functionality (toy MC, advanced plotting)
- ◆Not yet fully integrated in ROOT (built from a tar file)
- +Large and complex package
 - + question of long term maintenance



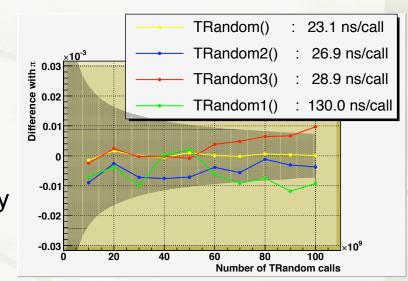
New Fitting classes

- + Have a simplified version of RooFit to replace current TVirtualFitter
 - ★ RooFit will still be needed for complex fits
- → Core fitting classes independent of other ROOT library
 - → dependence on libHist (TH1 and TF1) will be only at an outer level
- ◆ Use function interfaces (i.e IParamFunction) defined in MathCore
- Define interface for minimization
 - + choose minimizer at run-time (using plug-in manager)

New Fitter Design


New Fit Panel (Fit GUI)

- Develop a new Fitting GUI for ROOT data analysis objects (TH1, TGraph and TTree)
 - + to improve quality and functionality of old one
 - + easier for user to drive and control the fits
- Provides functionality for:
 - + function combinations
 - + parameter definition (setting values, fixing, etc...)
 - + select fitting methods (Chi2, likelihood, linear fit)
 - choose fitting options
 - + pick out minimizer library (Minuit, Minuit2, Fumili)
 - + advanced drawing options (residuals, CL, contours)


New Fitting GUI

- prototype being developed
 - panel to control function parameters already released

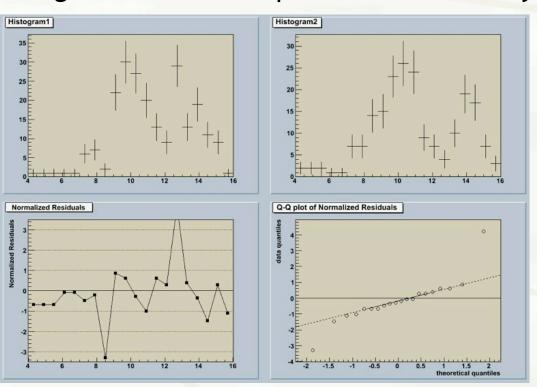
Random Numbers Improvements

- default is now Mersenne-Twister generator (TRandom3)
 - * fast and excellent pseudo-random quality
- replace obsolete TRandom2 with TausWorth generator
- → add RanLux generator (TRandom1)
- use a better linear congruential for TRandom
 - old one had seeding problems and a not uniform coverage
 - need to maintain for backward compatibility a generator based on a state of only 32 bits
 - very short period (2³¹ ~ 10⁹)
 - strongly discourage its use in any statistics application

Random Numbers

- Added in MathMore interface for GSL random
- Improved generation of random distributions:
 - + Poisson for large N
 - + performance improvements for others (Landau)
- Fermilab computing group has developed a new random package following C++ standard proposal
 - + foreseen as a CLHEP replacement
 - → no plan for the moment to include it in ROOT
 - will be proposed to be included in Boost (uses some Boost classes)
- → Need to review with experiments and Geant4 their future needs for random numbers (after CLHEP)

Histogram Comparison


Improvements in Chi2 test for comparing histograms

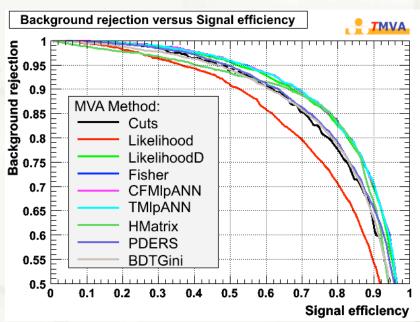
* algorithm from N. Gagunashvili and implemented in C++ by

D. Haertl

 add possibility to use weighted histograms

- comparison of histograms with different scales
- produce normalized residuals

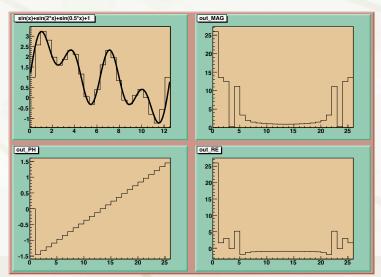
TMVA



- → New package for multivariate analysis distributed in ROOT
 - from A. Hocker, J. Stelzer, H. Voss, K. Voss, X. Prudent

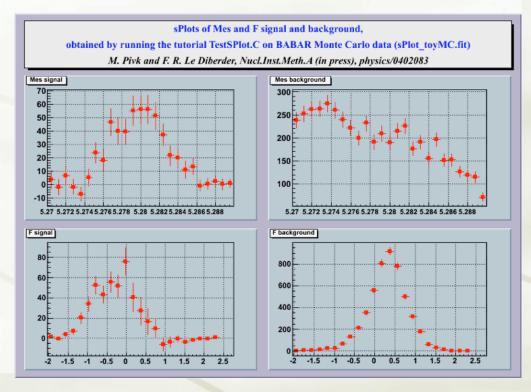
Provides various methods for signal/background

discrimination:


- Rectangular cut optimization
- + Correlated likelihood estimator
- Multi-dimensional likelihood estimator
- + Fischer discriminant
- H-matrix estimator
- Artificial Neural network(2 implementations)
- + Boosted decision trees

FFT

- → Included in ROOT a common base class (TVirtualFFT)
 - * add a functions to use it from TH1 (TH1::FFT)
- → Implemented an interface to the popular FFTW package (see www.fftw.org)
 - + support for one and multi-dimensional transforms
 - support for complex and real transformations



- TFFTComplex for complex input/ complex output transforms
- TFFTRealComplex for real input/ complex output
- TFFTComplexReal for complex input/ real output
- → TFFTReal for real input/output

SPlot

- new tool used to access the validity of maximum likelihood fits for discriminating signal from background
 - + from M. Pivk and F.R. Le Diberder
- SPlot gives unbiased distributions of the control variables
 - independently for all the various sources of events
 - no use of the control variables knowledge

Future Plans

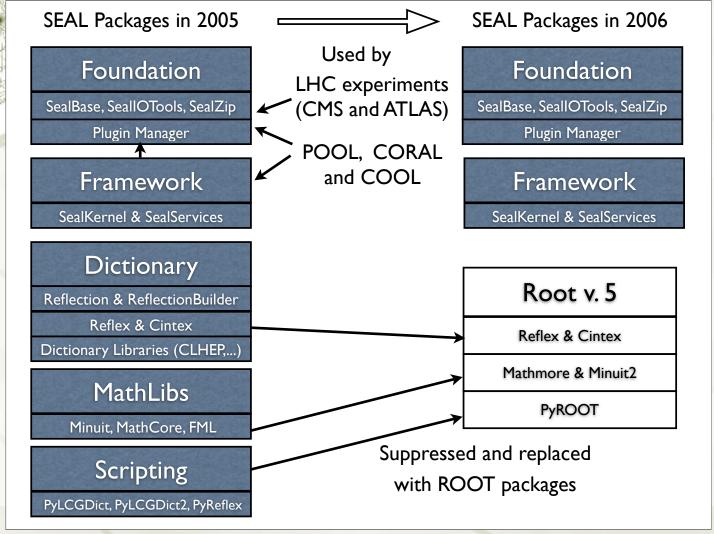
- * MathCore and MathMore
 - * integration with ROOT analysis objects, like Histogram and Function classes
 - + complete in *MathMore* the GSL wrapper
 - + quasi-random numbers, multi-dimensional integration
 - work on requests and feedback from the experiments
 - → CMS and LHCb started using MathCore and SMatrix
 - → ATLAS started using SMatrix for the track fit
- Complete new ROOT fitting classes and Fit GUI
 - + easier to use various fitting and minimization methods
- + Integrate UNURAN
 - + package for generating non-uniform random numbers
 - + from Wien statistics group (J. Leydold)

Documentation

- Online doc based on Doxygen (and THtml) for the new classes of MathCore, MathMore, SMatrix and Minuit2
 - + provided for every new ROOT release
 - + example for latest 5.13.02:
 - http://seal.web.cern.ch/seal/MathLibs/5_13_02/SMatrix/html/index.html
- → Written a new Math chapter in the ROOT 5.12 User Guide (chapter 13, 225-247)
 - describe random numbers, MathCore (GenVector), mathematical functions, SMatrix
 - ★ see ftp://root.cern.ch/root/doc/chapter13.pdf
- → Separate docs exist for other packages (Minuit2, RooFit)

References

- * MathCore online doc: http://seal.web.cern.ch/seal/MathLibs/MathCore/html/index.html
- * MathMore online doc: http://seal.web.cern.ch/seal/MathLibs/MathMore/html/index.html
- → SMatrix online doc: http://seal.web.cern.ch/seal/MathLibs/SMatrix/html/index.html
- → Minuit2 online doc: http://seal.web.cern.ch/seal/MathLibs/Minuit2/html/index.html
- → RooFit homepage: http://roofit.sourceforge.net/
- → TMVA homepage: http://tmva.sourceforge.net/
- → FFTW homepage: http://www.fftw.org/
- → Histogram comparison paper: http://arxiv.org/abs/physics/0605123
- ◆ SPlot paper: http://arxiv.org/abs/physics/0402083
- → UNURAN homepage: http://statmath.wu-wien.ac.at/unuran/
- → C++ Random number proposal:
 - http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2079.pdf



SEAL Status and Plans

- Work package of the ROOT project with responsibility
 - + facilitate migration of packages in ROOT
 - + maintenance
 - → some software not migrated so far in ROOT
 - requested by the LHC experiments and other LCG projects

Current Status of SEAL

- SEAL release contains only these subsystems:
 - **★** Foundation:
 - → SealBase, SealIO, SealZip, SealUtil
 - + set of utility classes
 - + used by POOL, CORAL, COOL
 - + used by CMS and ATLAS
 - → PluginManager (based on SealBase)
 - + used directly by POOL in the Storage Service
 - + used by CMS in the new framework
 - + Framework (component model)
 - → based on PluginManager
 - → dependent on Boost (uses Boost ref counted pointers)
 - + used by CORAL (and COOL) and CMS

Current SEAL Status (2)

- SEAL contains also MathLib (with FML and PyFML)
 - *it will be suppressed when new fitting classes will be also available in ROOT
- → No direct dependency anymore from ROOT
 - + only at the level of testing
- SEAL is in maintenance mode
 - + no new developments
 - + latest SEAL release built in April
 - new release foreseen with few bug fixes and MAC OSX support
- + Problem discovered by COOL in the component model
 - + no support for multi-thread operations

Outlook for SEAL

- Investigate if worth keeping Foundation and Framework in a separate SEAL project
 - main client is POOL/CORAL/COOL
 - → to satisfy the requirements (multi-thread support) some extra effort is needed
- plug-in manager could be moved/merged in ROOT
 - + on-going studies on a plug-in manager based on Reflex
 - → much simpler than current one in SEAL
 - + could merge with current ROOT plug-in manager
 - + experiments and POOL could then use this one