Meutrino Physics:

Present and Future

Boris Kayser CERN November 27, 2006

The Neutrino Revolution (1998 – ...)

Neutrinos have nonzero masses!

Leptons mix!

These discoveries come from the observation of *neutrino oscillation*.

The Physics of Neutrino Oscillation

Neutrinos Come in at Least Three Flavors

The known neutrino flavors:

Each of these is associated with the corresponding charged-lepton flavor:

The Meaning of this Association

Over short distances, neutrinos do not change flavor.

Does Not Occur

But if neutrinos have masses, and leptons mix, neutrino flavor changes do occur during *long* journeys.

Let Us Assume Neutrino Masses and Leptonic Mixing

Neutrino mass —

There is some spectrum of 3 or more neutrino mass eigenstates v_i :

Leptonic mixing —
$$\ell_e = e, \, \ell_\mu = \mu, \, \ell_\tau = \tau$$
When W⁺ $\rightarrow \ell_{\alpha}^{+} + \nu_{\alpha}^{-}$,
$$\ell_e = e, \, \ell_\mu = \mu, \, \ell_\tau = \tau$$

the produced neutrino state $|v_{\alpha}\rangle$ is

Another way to look at W decay:

A given ℓ_{α}^{+} can be accompanied by any ν_{i} .

$$Amp(W^+ \rightarrow \ell_{\alpha}^{+} + \nu_i) = U^*_{\alpha i}$$

The neutrino state $|v_{\alpha}\rangle$ produced together with ℓ_{α}^{+}

is
$$|v_{\alpha}\rangle = \sum_{i} U^*_{\alpha i} |v_{i}\rangle$$
.

According to the Standard Model, extended to include neutrino mass and leptonic mixing —

- The number of different v_i is the same as the number of different $\ell_{\alpha}(3)$.
- The mixing matrix U is 3 x 3 and unitary: $UU^{\dagger} = U^{\dagger}U = 1$.

Some models include "sterile" neutrinos — neutrinos that experience none of the known forces of nature except gravity.

In such models, there are $N > 3 v_i$, and U is N x N, but still unitary.

Just as each neutrino of definite flavor v_{α} is a superposition of mass eigenstates v_{i} , so each mass eigenstate is a superposition of flavors.

From $|v_{\alpha}\rangle = \sum_{i} U^*_{\alpha i} |v_{i}\rangle$ and the unitarity of U,

$$|v_i\rangle = \sum_{\alpha} U_{\alpha i} |v_{\alpha}\rangle$$
.

The flavor- α fraction of v_i is —

$$|\langle v_{\alpha} | v_{i} \rangle|^{2} = |U_{\alpha i}|^{2}$$
.

The Standard Model (SM) description of neutrino *interactions* (not masses or leptonic mixing) is well-confirmed.

We will assume it is true, and extend it to include mixing.

For the lepton couplings to the W boson, we then have —

Left-handed
$$L_{SM} = -\frac{g}{\sqrt{2}} \sum_{\alpha=e,\mu,\tau} \left(\overline{\ell}_{L\alpha} \gamma^{\lambda} v_{L\alpha} W_{\lambda}^{-} + \overline{v}_{L\alpha} \gamma^{\lambda} \ell_{L\alpha} W_{\lambda}^{+} \right)$$

$$= -\frac{g}{\sqrt{2}} \sum_{\substack{\alpha=e,\mu,\tau\\i=1,2,3}} \left(\overline{\ell}_{L\alpha} \gamma^{\lambda} U_{\alpha i} v_{Li} W_{\lambda}^{-} + \overline{v}_{Li} \gamma^{\lambda} U_{\alpha i}^{*} \ell_{L\alpha} W_{\lambda}^{+} \right)$$
Taking mixing into account

