

Status of SuperNEMO Demonstrator

Frédéric Perrot

CENBG, University of Bordeaux, CNRS/IN2P3 5th August 2016

On behalf of the SuperNEMO collaboration

38th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS

AUGUST 3 - 10, 2016 CHICAGO

Outline

- The SuperNEMO experiment with the Tracker-Calorimeter technique
- Radiopurity strategies to achieve a « 0-background »
 Demonstrator module
- Status of the SuperNEMO Demonstrator construction & integration
- Conclusion

The SuperNEMO experiment with the Tracker-Calorimeter technique

The Tracker-Calorimeter technique

Particle identification

ββ event

- ✓ Choice of the ββ isotopes (source ≠ detector)
- ✓ Full topological event reconstruction (vertex, energy, TOF) including α particle, e[±] and γ -ray identification
 - → Strong background suppression
- \rightarrow Ability to disentangle different mechanisms for $\beta\beta0\nu$ by looking at several observables (E₁, E₂, E₁+E₂, $\cos(\theta)$, γ 's for decay to excited states)
- ✓ Poorer efficiency and energy resolution compared to pure calorimeter techniques

From NEMO-3 to SuperNEMO

	NEMO-3	SuperNEMO
Mass Main ββ isotope Other ββ isotopes	6.9 kg ¹⁰⁰ Mo ⁸² Se, ¹³⁰ Te, ¹¹⁶ Cd, ¹⁵⁰ Nd, ⁹⁶ Zr, ⁴⁸ Ca	100 kg ⁸² Se ¹⁵⁰ Nd or ⁴⁸ Ca ?
Energy resolution FWH	M @ 3 MeV 8%	4%
ββ sources radiopurity A(208TI) A(214Bi) Radon in Tracker A(222Rn)	~100 µBq/kg 60 - 300 µBq/kg 5.0 mBq/m³	<2 μBq/kg <10 μBq/kg < 0.15 mBq/m ³
Total background cts.keV ⁻¹ .kg ⁻¹ .y ⁻¹	1.3 ×10 ⁻³	5.0 × 10 ⁻⁵
Sensitivity (90% C.L.) $T_{1/2}^{0v}$ $< m_v >$	> 1.1×10 ²⁴ y < 0.3 - 0.6 eV	> 1.0×10 ²⁶ y < 0.05 – 0.10 eV

82Se baseline and other possible isotopes

- 82Se has $Q_{\beta\beta} = 3.0$ MeV (above the 2.6 MeV γ -ray)
- Enrichment up to 98% of ⁸²Se
- High $T_{1/2}^{2v} \sim 10^{20}$ y (14 times higher than for 100 Mo)
- \rightarrow contribution of $2\beta 2\nu$ events in $2\beta 0\nu$ energy window strongly reduced
- → baseline isotope for SuperNEMO
- Other promising isotopes :
 - 150 Nd ($Q_{\beta\beta}=3.37$ MeV) with a high phase space factor, even in $2\beta0\nu$ decay to excited states
 - 48 Ca (Q_{BB} =4.28 MeV)

SuperNEMO Demonstrator Module

Full SuperNEMO: 20 modules

First step: Demonstrator Module

- 7 kg of ⁸²Se in thin foils with e~250 μm (~50 mg/cm²)
- 2034 Tracker Cells operating in Geiger mode
 - 712 Calorimeter Modules with Polystyrene Scintillators + 8"(5") PMTs
 - Magnetic field for particle identification
 - Passive shieldings (iron, water)

Expected sensitivity for a 17.5 kg·y exposure (90 % CL)

$$T_{1/2} > 6.0 \times 10^{24} \text{ y}$$

 $< m_y > < 0.2 - 0.4 \text{ eV}$

The SuperNEMO Collaboration

Radiopurity strategies

Radiopurity strategies

- Goal : to reach a « 0-background » level for the Demonstrator module
- Strategies:
 - ✓ Purification and measurement of the ⁸²Se ββ foil internal radiopurity at the **level of 2-10 μBq/kg**
 - → development of the BiPo3 detector
 - ✓ Selection of radiopure internal materials to reach a Radon level of 150 µBq/m³ in the Tracker
 - → development of several Radon facilities
 - ✓ Selection of radiopure surrounding materials
 - \rightarrow large screening process using low-background γ spectrometry with HPGe detectors

BiPo-3 detector

Goal: to measure ⁸²Se ββ foils at 2 μBq/kg (10 μBq/kg) level for ²⁰⁸Tl (²¹⁴Bi)

→ first 82Se foils are under qualification with BiPo-3 detector

Radon Challenges

Goal: to reach 150 µBq/m³ in the tracker gas (i.e. 70 atoms of Rn/m³!)

Strategies against Radon

Radon emanation of critical materials

Large emanation facility with V~700L well-adapted to large volume or surface samples (films, PMTs...)

Small emanation facilities with V~3L well-adapted to smaller samples with a higher sensitivity

Radon diffusion in the Tracker

Rn diffusion facility to select ultra tight barriers (nylon film, sealing) to prevent Radon diffusion in the Tracker

Rn tent and 'Rn-free' air to prevent diffusion into the Demonstrator module from normal air in the lab.

Radon Concentration Line to measure the final volumic activity in the Tracker

→ for 2 m³/h flow rate, the 150 µBq/m³ level is achievable !

Status of the SuperNEMO Demonstrator construction & integration

SuperNEMO 82Se foils production

- 7 kg of ⁸²Se ββ source divided into 36 foils of 270 x 13.5(12.5) cm² with a 250 μm thickness
- 3 different ⁸²Se powder purification techniques have been used
- 11 foils among 36 (30% complete) already produced and under qualification with BiPo-3
- Other foils prepared in an ISO 6 clean room (1000 class room)

 Calibrations will be performed with radioactive sources at controlled positions thanks to an automatic deployement system

→ End of production and installation of the ⁸²Se foils planned for the end of 2016

SuperNEMO Tracker Construction

93% of Tracker Cell production complete
~1% rate of dead channels

- Geiger-mode multi-wires drift chamber
- Robotic construction of 2034 drift cells containing approx. 15,000 wires
- Restricted set of materials : copper, steel, duracon
- Ultra-clean construction, assembly and testing conditions
- → 93% of the Tracker Cells is completed with only 1% rate of dead channels
- → full Tracker completed in autumn 2016

SuperNEMO Calorimeter Construction

- 520 Calorimeter Modules
 - PS Scint.+ 8" High QE Radiopure PMTs
 - <FWHM> = 8.0-8.3% @ 1 MeV
 - Time resolution of 400 ps @ 1 MeV
- Calibration systems to maintain energy stability better than 1%

Poster #449

- Validation with detailed optical simulations
- → Calorimeter completed and delivered in July!

SuperNEMO Integration @ Fréjus (LSM)

 More than ½ detector installed at Modane Underground Lab. (LSM, Fréjus, 4800 m.w.e.)

- Remaining sub-detectors delivered in 2016
- Commissionning of ½
 Demonstrator Module
 starts in autumn 2016!

Conclusion

- SuperNEMO is an experiment using the tracking calorimeter technique, very powerful to identify and reject the backgrounds for ββ studies
- A first Demonstrator Module is in construction with 7 kg of 82 Se with an expected sensitivity of $< m_v > < 0.2 0.4$ eV with a 17.5 kg·y exposure
- Several strategies have been successfully initiated to reach a « zero-background » level:
 - BiPo-3 Detector able to measure the ²⁰⁸Tl at the level of 2 μBq/kg
 - Radon facilities developed to reduce the Radon contamination in the Tracker and to measure it at the level of 150 µBq/m³
- Status of SuperNEMO Demonstrator :
 - All production will be completed in 2016
 - Integration under progress
 - Early commissionning of ½ detector by the end of 2016
 - First ββ events expected in 2017

Saturday 6th August at 6:00 PM

 Poster #479: Radioactive source deployment system for the calibration of the SuperNEMO detector – R. Salazar, J. Bryant

Monday 8th August at 6:30 PM

- Poster #442 : The SuperNEMO ββ source production A. Jérémie, A. Remoto
- Poster #449 : The SuperNEMO Light Injection & Monitoring System Th. Le
 Noblet, J. Cesar, R. Salazar
- Poster #472 : Gamma-tracking and sensitivity to gamma-emitting backgrounds in SuperNEMO – S. Calvez
- Poster #644 : Sensitivity to Radon induced background in SuperNEMO Th.
 Le Noblet, A. Remoto
- Poster #664 : The SuperNEMO Calorimeter Ch. Marquet, C. Cerna

Thank you for your attention

Backup slides

Demonstrator sensitivity and Rn studies

Demonstrator sensitivity and Rn studies

Ability to measure its own background

With combined 1e1g and 1e2g channels and gamma-tracking:

- 208Tl: activity measured with 10% of uncertainty in 8 months
- ²¹⁴Bi: activity measured with 10% of uncertainty in 2 months

Ability to measure its own background

With 1e1α channel + alpha track lenght, the Demonstrator is able to distinguish the different Radon contributions from:

- The bulk of the source foil
- The surface of the source foil
- The surface of the Tracker wires

Radon level known at 4% in 1 week (not hoped!)

Ability to measure its own background

With 1e channel, the Demonstrator will be able to detect and remove « hot spots »

Exemple of « hot spots » in the 82Se foils in NEMO3

How To Build a $\beta\beta$ -Experiment

maximise efficiency (ε) & isotope abundance (a)

maximise exposure = mass $(M) \times time(t)$

$$T_{1/2}^{0v}$$
 (90% C.L.) = 2.54×10²⁶ y $\left(\frac{\varepsilon \times a}{W}\right)\sqrt{\frac{M \times t}{b \times \Delta E}}$

W = atomic weight

minimise background (b) & energy resolution (ΔE)

Other observables with the Demonstrator

Decays to Excited States

Majoron Emission

Right-handed current...

BiPo3 sensitivity

The Radon Concentration Line

Radon emanation results for Tracker

Tracker was divided in 4 sections labelled C0, C1, C2 and C3.

Extrapolation of Radon activity in the Tracker by using the average emanation value of C0, C1 and C2

Input Flow (m³/hr)	Suppression Factor	Activity in the Tracker with tent (mBq/m³)
0.5	5.4	0.51 ± 0.06
1.0	9.7	0.28 ± 0.03
2.0	18.4	0.15 ± 0.02

Large Rn emanation chamber: principle

Sensitivity of the Rn emanation setup

For 1 m² surface sample \rightarrow emanation rate < 400 Rn atoms/day (95% C.L.) For 30 m² surface sample \rightarrow emanation rate < 12 Rn atoms/day (95% C.L.)