

ICHEP, 3rd - 10th August, Chicago

Top is the heaviest fundamental particle discovered so far

 $m_t = 173.34 \pm 0.76 \text{ GeV}$

[arxiv:1403.4427]

- Lifetime: $\tau \sim 5x10^{-25}\,s << \Lambda_{_{QCD}}$ Observe bare quark properties
- Large Yukawa coupling to Higgs boson $\lambda_t \sim 1$

special role in electroweak symmetry breaking

High precision tests of QCD/SM Tops are background to many searches Top quarks as window to new physics

The Tevatron: CDF & D0

- Peak luminosities: 3 − 4 x 10³² cm⁻²s⁻¹
- ~10 fb⁻¹/experiment recorded
- Tevatron operation from 1983 till shutdown in September 2011

Strong interaction: Top pairs

Tevatron vs. LHC (13 TeV):

qq: 85% vs ~10% *gg*: 15% vs. ~90%

Decay channels:

Top Pair Branching Fractions

Theory (NNLO+NNLL):

Collider	$\sigma_{\rm tot} \; [{\rm pb}]$	scales [pb]	pdf [pb]
Tevatron	7.164	+0.110(1.5%) -0.200(2.8%)	+0.169(2.4%) $-0.122(1.7%)$
LHC 7 TeV	172.0	+4.4(2.6%) $-5.8(3.4%)$	+4.7(2.7%) -4.8(2.8%)
LHC 8 TeV	245.8	+6.2(2.5%) $-8.4(3.4%)$	+6.2(2.5%) $-6.4(2.6%)$

LHC 13 TeV $\sigma = 832^{+40}_{-46} \text{ pb}$

- Prof le log-LH f t by D0 f nal measurement at Tevatron
 - 3 individual log-LH f ts for dilepton, I+jets and combination
 - Employ BDT (w gradients) discriminant, optimized to extract m(top)
 - Reduced uncertainties despite adding "hadronization" category

- Final Tevatron combination is work in progress
 - D0 [arxiv:1605.06168]
- Luminosity uncertainty: 4.3% (long effort in understanding paid of)

Combination of dilepton & I+jets:

$$\sigma = 7.26 \pm 0.13$$
 (stat.) $\pm 0.57/0.50$ (syst.) pb

$$\delta \sigma / \sigma = 7.6\%$$

Subm. to PRD

Theory (NNLO+NNLL, top++): 7.16 pb ± 3.5%

Pole mass extraction:

→ see Frederic Deliot

New physics...

New physics ? e.g. W'

- → missing E_T and 2-3 jets
- → extending LHC exclusions into low mass region PRL 115 061801

No new physics....

Top quark physics

JHEP 1402 (2014)

Measurements at Tevatron

& LHC are complementary 0.08

 Variety of models with wide parameter space still

allowed \dot{W}' , G, T, Z/

Interference appears at NLO QCD:

Only occurs in $q\bar{q}$ initial state; gg is fwd-bwd symmetric

- This is a forward-backward asymmetry at Tevatron
- No valence anti-quarks at LHC \bar{t} more central
- SM predictions at NLO (QCD+EWK) Tevatron: $A_{ER} \sim 10 \%$ vs. LHC: $A_{C} \sim 1 \%$ NNLO+NNLL
- Experimentally: Asymmetries based on <u>decay leptons</u> or fully reconstructed top quarks "easier"

"harder"

Differential measurements by CDF ...
 and D0: PRD 87 092002

Phys. Rev. D 90, 072011 (2014)

 Differential theory calculation by Czakon et al.: [arXiv:1601.05375]

- CDF agrees within < 2 s.d.
- Results at aN3LO by Kidonakis agree with D0 (same caveat for CDF)
 PRD 91 071502
- Scale choice can have large impact on size of Afb
 - Keep in mind for LHC ?!

Dilepton channel: Likelihood per event for correct Δy assignment

Simultaneous 2D measurement:

$$A_{FB} = 15.0 \pm 8.0 \text{ (tot.) } \%$$
 $\kappa P = 7.2 \pm 11.3 \text{ (tot.) } \%$
Constrain P to SM value:
 $A_{FB} = 17.5 \pm 6.4 \text{ (tot.) } \%$

(SM polarization essentially 0)

Phys. Rev. D 92, 052007 (2015)

8

Top quark asymmetries

- Reconstruct in A_{FB} in dilepton events
- Likelihood based kin. Reconstruction
- Probability density dist for each solution

Slope in $|\Delta y|$ agrees with theory and D0 result in I+jets

CDF note 11161 (2015)

Agreement with the SM

Latest combinations:

- → Agreement with SM
- → Tevatron combination is underway!

Tevatron Top Asymmetry

Top quark polarization

Measure polarization of the top quark: spin

in top quark rest frame

- 1st measurement of the transverse polarization
 - SM expectation is 0
- SM almost 0 for helicity and be

beam	as well	
Axis	Measured polarization $P_{\hat{n}}$	SM prediction
Beam	$+0.070 \pm 0.055$	-0.002
Helicity	-0.102 ± 0.060	-0.004
Transverse	$+0.040 \pm 0.034$	+0.011

Subm. to PRL [arXiv:1607.07627]

- → dilepton & I+jets combination: $P = 0.081 \pm 0.048$
- In agreement with the SM

A. Jung

Top quark physics

Top quark spin correlations

• This is a different quantity at Tevatron and LHC:

- Production at threshold and well above
- pp versus $p\overline{p}$ collisions

- Complementary to the LHC results
 - e.g. light top quark partners modif es SM spin correlation expectation
- Matrix element technique (II + I+jets)
 - Optimized off-diagonal basis

Phys. Lett. B 757, 199 (2016)

$$R = \frac{P_{\text{sgn}}(H=c)}{P_{\text{sgn}}(H=u) + P_{\text{sgn}}(H=c)}$$

$$O_{off} = 0.89 \pm 0.22$$
 (tot.) Evidence for spin correlation: $O_{off, MC@NLO} = 0.766$ 4.2 s.d. (observed)

Summary & Outlook

- Very successful Tevatron top quark program
- Precision measurements of Top Quark properties at Tevatron (all employing full Run II data set)
 - All results at 1.96 TeV in pp conf rm that top quark behaves as expected in SM
- Complementary results at different energy and initial state!

 More legacy Tevatron combinations (mass, Afb, cross section) to come...plus a new mass extraction from differential cross sections

Only small limited selection of results shown, more information:

CDF Top Web pages

D0 Top Web pages

Thank you!

• List of systematic uncertainties, dominant are luminosity_{rxiv:1605.06168}] hadronization, jet modeling, signal generator

Source of uncertainty	$\delta_{\ell+\mathrm{jets}}$, pb	$\delta_{\ell\ell}$, pb	$\delta_{\rm comb}$, pb	Shift, pb
Signal modeling				
Signal generator	± 0.21	± 0.05	± 0.17	+0.08
Hadronization	± 0.26	± 0.33	± 0.25	+0.12
Color reconnection	± 0.08	± 0.05	± 0.09	+0.02
ISR/FSR variation	± 0.08	± 0.04	± 0.06	-0.05
PDF	± 0.04	± 0.03	± 0.02	-0.01
Detector modeling				
Jet modeling & ID	± 0.11	± 0.08	± 0.04	+0.07
b-jet modeling & ID	± 0.27	± 0.26	± 0.23	-0.15
Lepton modeling & ID	± 0.20	± 0.26	± 0.17	-0.11
Trigger efficiency	± 0.32	± 0.08	± 0.16	+0.01
Luminosity	± 0.30	± 0.30	± 0.27	+0.10
Sample Composition				
MC cross sections	± 0.07	± 0.13	± 0.09	+0.01
Multijet contribution	± 0.11	± 0.02	± 0.10	+0.10
W+jets scale factor	± 0.21	± 0.01	± 0.15	-0.50
Z/γ^* +jets scale factor	± 0.07	± 0.11	± 0.12	+0.12
$MC\ statistics$	± 0.01	± 0.01	± 0.02	+0.00
Total systematic uncertainty (quadratic sum)	± 0.70	± 0.64	± 0.60	
Total systematic uncertainty (central COLLIE)	± 0.67	± 0.73	± 0.55	

- Measurements at Tevatron
- & LHC are complimentary
 - Variety of models with wide parameter space still allowed
 W', G, T, Z/

MARK-J at s = 34.6 GeV

- Updated D0 measurement (improvements beyond "lumi-scaling")
- Existing CDF measurement in I+jets decay channel also measured kinematic dependence of A_{ED} PRD 87 092002

Kinematic dependies larger than "currently" predicted by SM

$$A_{FB} = 10.6 \pm 3.0 \text{ (tot.) }\%$$

CDF: $A_{FB} = 16.4 \pm 4.5 \text{ (tot.) }\%$

D0 agrees with SM within uncertainties CDF higher than SM predictions

[arxiv:1403:1294]

Reminder: Leptonic asymmetries less affected by reconstruction effects

- lepton+jets, updated measurement of leptonic asymmetries
- Discriminant D_c to determine sample composition
- Final measurements, need to maximize acceptance & precision Include the 3 jet bin
 - Larger contribution of backgrounds in 3 jet bin need to calibrate W+jets, use 0b-tag

[arxiv:1403:1294]

- lepton+jets, updated measurement of leptonic asymmetries
- Discriminant D_c to determine sample composition
- Need to calibrate W+jets, use 0 b-tag

- Asymmetry in W+jets control region (CR) different from MC
- PDF uncertainty shown by yellow bars
- Full difference between data and MC slope taken as systematic uncertainty

[arxiv:1403:1294]

- lepton+jets, updated measurement of leptonic asymmetries
- Discriminant D_c to determine sample composition
- Differential measurement of the leptonic asymmetry

In agreement with SM:

$$A_1 = 4.2 \pm 2.3 \text{ (stat.) } \pm_{2.0}^{1.7} \text{ (syst)}$$

Combined I+jets & dilepton:
 $A_1 = 4.2 \pm 2.0 \text{ (stat.) } \pm 1.4 \text{ (syst.) } \%$

MC@NLO: 2%

	Absolute uncertainty, %			
	Reconstruction level		Prod. level	
Source	Prediction	Measurement	Measurement	
Jet reco	-0.1	177 J	5-0	
JES/JER	+0.1	+0.1/-0.3	+0.2/-0.3	
Signal modeling	_	-0.2	+0.6/-0.4	
b tagging	± 0.1	+0.5/-0.8	+0.8/-1.1	
Bg subtraction	n/a	+0.1/-0.3	+0.1/-0.3	
Bg modeling	n/a	+1.4/-1.5	+1.3/-1.5	
PDFs	0000 07-00	+0.3/-0.2	+0.1/-0.2	
Total	± 0.1	+1.5/-1.7	+1.7/-2.0	

	$A_{\mathrm{FB}}^{l},\%$		
Channel	Data	MC@NLO	
l+3 jets, 1 b tag	$-6.8 \pm 6.0 (\text{stat.})^{+6.1}_{-5.6} (\text{syst.})$	2.7 ± 0.4	
$l+3$ jets, ≥ 2 b tags	$3.7 \pm 4.3 (\text{stat.})^{+1.1}_{-1.2} (\text{syst.})$	2.8 ± 0.3	
$l+\geq 4$ jets, 1 b tag	$14.8 \pm 4.2 (\text{stat.})^{+1.1}_{-1.2} (\text{syst.})$	0.5 ± 0.3	
$l+\geq 4$ jets, ≥ 2 b tags	$-0.9 \pm 3.2 (\mathrm{stat.})^{+0.3}_{-0.9} (\mathrm{syst.})$	1.1 ± 0.2	
Total	$2.9 \pm 2.1 (\text{stat.})^{+1.5}_{-1.7} (\text{syst.})$	1.6 ± 0.2	

Forward-Backward Lepton Asymmetry, %

- Lots of effort went into maximizing expected signif cance: Reduce systematic uncertainties Increase available sample size
 - Full Run II expected statistical uncertainty 4.6%, need 3% for 5 s.d. Discovery (given central value does not move) Can we get to 3%?

Partial *ft* reconstruction:

- Lost jet is from hadronic top decay (80%)
- Reconstruct leptonically decaying top and one jet
- Use a proxy for hadronically decaying top using two other jets
- Construct a likelihood & correctly reconstruct sign of Δy:

- Shares sames selection as the one for the leptonic asymmetry
- Get the mass dependence of A_{FB} :
 - Need 2D regularized unfolding

DØ Preliminary I = 9.7 fb-1

 New measurement by D0 in the dilepton channel employing the matrix element method:

assign a likelihood per event for most probably Δy value

$$\sum_{events} L_{z_i}(\Delta y_{tar{t}}) ext{ vs } \Delta y_{tar{t}} ext{ true}$$

DILEPTON DØ Preliminary, L=9.7 fb $^{-1}$

Data: 542

 Control distributions show reasonable modeling by MC extract asymme

A. Jung

Properties of the top quark

DILEPTON	DØ Preliminary, L=9.	7 fb
Source of uncertainty	Uncertainty on $A_{\text{FB}}^{t\bar{t}}$ (%)	22
Detector modeling		2
jet energy scale	0.14	
jet energy resolution	0.17	
flavor-dependent jet response	0.03	
b-tagging	0.11	
Signal modeling		
ISR/FSR	0.32	8
forward/backward ISR	0.36	∍V
hadronisation and showering	→ 1.08	fb
higher order correction	0.80	14
PDF	0.60	
Background model		
fake background normalization	0.35	
fake background shape	0.35	
background normalization	0.53	
Calibration		
$\Delta y_{t\bar{t}}$ model	→ 2.7	4
calibration statistics	0.4	.V
Total	3.3	

DII EDTON

Top quark polarization

Source	Beam	Helicity	Transverse
Jet reconstruction	± 0.010	± 0.008	± 0.008
Jet energy measurement	± 0.010	± 0.023	± 0.006
b tagging	± 0.009	± 0.014	± 0.005
Background modeling	± 0.007	± 0.021	± 0.004
Signal modeling	± 0.016	± 0.020	± 0.008
PDFs	± 0.013	± 0.011	± 0.003
Methodology	± 0.013	± 0.007	± 0.004
Total systematic uncertainty	± 0.030	± 0.042	± 0.015
Total statistical uncertainty	± 0.046	± 0.044	± 0.030
Total uncertainty	± 0.055	± 0.061	± 0.034

Axi gluon & Z' models

 Various axi gluon models with different couplings, differential cross section predictions provided by A. Falkowicz

[arxiv:1401.2443]

(- = 1)

Remarks:

- Models with masses of 0.2 to 2 TeV and L (left), R (right), A (axial)
- Large masses highly constrained by LHC measurement
- Low masses not so much, but tough as effects are small

	$\sigma_{\rm tot}(p\bar{p}\to t\bar{t}) \; [{\rm pb}]$
Data	$8.27^{+0.92}_{-0.91}$ (stat. + syst.)
NNLO pQCD (SM)	$7.24_{-0.27}^{+0.23} \text{ (scales + pdf)}$

Phys. Rev.	D. 88, 112002 (2013)
Phys. Rev.	D 84, 112005 (2011)
CDF Conf.	11035

Acc. by PRD [arxiv:1309.7570]

CMS [arxiv:1309.2030]
D0 [arxiv:1401.5785]
CDF PRL 102 222003

	$\Delta\sigma_{\mathrm{tot}}(pp \to tt)$ [pb]
axi200L	$0.97 \pm 0.06 \text{ (scale)}$
axi200R	$0.97 \pm 0.06 \text{ (scale)}$
axi200A	$0.06 \pm 0.04 \text{ (scale)}$
axi400A	$0.26 \pm 0.04 \text{ (scale)}$
axi800A	$0.22 \pm 0.04 \text{ (scale)}$
axi2000L	$0.87 \pm 0.15 \text{ (scale)}$
axi2000R	$0.55 \pm 0.06 \text{ (scale)}$
axi2000A	$0.05 \pm 0.06 \text{ (scale)}$
Z'220	$-1.00 \pm 0.06 \text{ (scale)}$

Axi gluon & Z' models

Ratio to data

- Compare various models to unfolded cross section data
- Reminder: High tail is used to constrain models
- Reminder: Bins are correlated, needs to be taken into account:

 ∪ based on full covariance matrix
- Clearly some models are in tension with the presented data!
 Z'
 Various axi gluons

Ratio to data

Axi gluon & Z' models

- Compare various models to unfolded cross section data
- Reminder: High tail is used to constrain models
- Reminder: Bins are correlated, needs to be taken into account:
 ♂ based on full covariance matrix
- Clearly some models are in tension with the presented data!
 Z'
 Various axi gluons

$$\chi^2 = \sum_{i,j} (y - \mu)_i \cdot \text{cov}_{i,j}^{-1} \cdot (y - \mu)_j$$

	$M(t\bar{t}) \left[\chi^2/ndf\right]$	$p_T^{\mathrm{top}} \left[\chi^2 / n df \right]$	$ y^{\mathrm{top}} [\chi^2/ndf]$
axi200L	0.96	1.07	1.20
axi200R	0.96	1.07	1.20
axi200A	0.85	3.55	3.88
axi400A	0.44	2.65	3.26
axi800A	0.97	2.86	3.23
axi2000L	0.58	1.27	3.78
axi2000R	0.43	1.94	2.75
axi2000A	0.88	3.56	4.11
Z'220	4.95	8.27	7.48

Tevatron data adds sensitivity at low mass Specific models heavily constrained

Top quark width

Source	Uncertainty (%)
Single-top quark t-channel cross section	9.2
$\mu_{\rm R}/\mu_{\rm F}$	4.3
JES 1	0.7
pileup	0.8
ME-PS	0.8
$\mu_{\rm R}/\mu_{\rm F}$	0.8
top-quark mass	0.6
Other sources	1.5
Total systematic	10.4

$$\Gamma_{\rm t} = 1.36 \pm 0.02 \, ({\rm stat.})^{+0.14}_{-0.11} \, ({\rm syst.}) \, {\rm GeV}$$

Top charge

- Fully reconstruct top pairs in lepton+jets decay channel
- Identify b-jet charge by jet charge algorithm
- Exclude -4/3 hypothesis by 5 s.d.

Conf rmed earlier measurements

