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ADMX-G2, an Axion Dark Matter Radio

Tests QCD axion models which would solve the strong-CP problem

Coherently scatter classical axion dark
matter wave (102° axions/m?3 coherent state)
on DC magnetic field.

Resonantly enhance scattering cross section
using tunable high-Q microwave cavity as

the “antenna.”

Use quantum-limited amplifier with
“irreducible” single photon readout noise.

At each radio tuning, look for tiny excess
power by averaging away noise over >10°
measured power spectra.

Confirm/exclude the predicted axion-photon
coupling at that frequency.

Aaron S. Chou (FNAL), ICHEP 2016
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dN/dt [Hz]

DFSZ signal photon rate for single volume=N’ cavity
vs. Standard Quantum Limit readout noise
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dN/dt [Hz]

Maximum tolerable background photon rate for

1 octave /year scan rate
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Swiss watch problem: Many resonant elements must
be simultaneously tuned to the same frequency

Cost and complexity scale at

least linearly with N__, 50 cm magnet bore

Aaron S. Chou (FNAL), ICHEP 2016



How many cavities are needed to cover 1 octave/year?

10°

256 cavities to reach 9 GHz

10°

64 cavities to reach 6.5 GHz
10

)

Currently installed ADMX single cavity
0.5-1 GHz will be a slam-dunk!

This scaling looks terrible...
Can we instead somehow
reduce the backgrounds?

# unit cavities needed to beat SQL noise
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Quantum-limited amplifiers suffer from zero-point
readout noise — the Standard Quantum Limit (SQL)
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Thermal noise = kT of energy per resolved mode
- Quantum noise = 1 photon per resolved mode in the T=0 limit.

Noise photon rate exceeds signal rate in high frequency dark matter axion searches.

Need new sensor technology....
Aaron S. Chou (FNAL), ICHEP 2016



Quantum non-demolition (QND)

single photon detection can do much better

Number operator commutes with the Hamiltonian—> all backreaction is put into the phase.
Measure exact photon number. Noise = shot noise, thermal backgrounds, read noise.
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Phase space area is still
¥%h but is squeezed in
radial (amplitude)
direction. Phase of
wave is randomized.

Aar . Chou (FNAL), ICHEP 2016

Demonstrated with Rydberg
atoms, (Haroche/Wineland
Nobel Prize 2012)

Implementation using solid state
artificial atom qubits,
(D.Schuster et.al, 2007)

Proposed for axion search:
(Lamoreaux, et.al, 2013,
Zheng, et.al, 2016)

Note: different from Carrack technique of
non-QND single photon counting using
Rydberg atoms (Ogawa,

Matsuki,Yamamoto, 1996) .



What does a QND single microwave photon
detector look like?

Aaron S. Chou (FNAL), ICHEP 2016



Coupled oscillators Energy stored in
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Mixing angle to diagonalize:

tan 20 = 2g/(w1 — wa)

Normal mode frequencies for small g
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Suppose one oscillator has non-linear restoring force

For example:

Resonant frequency of a real-
world pendulum increases with
oscillation amplitude

w, = W,(A,)

mgsin @ mg cos B

mg

Then the instantaneous resonant frequency of linear oscillator 1 depends
weakly on the amplitude or occupation number of nonlinear oscillator 2

5 29
w1 = Wq I

Measuring the frequency of oscillator 1 performs a QND measurement

on the number of quanta stored in oscillator 2 (and vice-versa)
Aaron S. Chou (FNAL), ICHEP 2016
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Cavity QED:
Use 2-level atom to measure cavity photon population

Linear cavity
Bosonic oscillator,
Number operator= Q' Q

2-level “atom”
Fermionic oscillator,
Number operator = O »

The 1%t order non-linearity in (number operator)? in the undiagonalized Hamiltonian is:

H =~ hw;, (aTa,—l— 1/2) +§ (wa—l—

292
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The atom frequency depends on the cavity resonator’s occupation number!

This product of number operators commutes with H and allows QND measurement.

Aaron S. Chou (FNAL), ICHEP 2016
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. Serge Haroche 2012 Nobel Prize:
m&g Atoms acts an amplitude—> frequency transducers.
’9&_,\ They probe the cavity photon number without any

\ net absorption of photons. QND measurement!

.Ramsey
Wineland's PhD
advisor)

Circular n
state —

preparation

e or g?
1 or O0?

atoms cavity

An atomic clock delayed by photons trapped inside



Birth, life and death of a photon
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Nonlinear circuit oscillators
have non-degenerate energy
level spacings and hence
behave just like 2-level atoms

Slides from Dave Schuster
(U.Chicago)
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Transmon qubit based on the Cooper pair box
J.Koch, e.al, Phys.Rev.A76, 042319 (2007)
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QND detectors developed for high fidelity quantum computing qubit readout.

B.R. Johnson, et.al, Nature Physics 6, 663-667 (2010)
Aaron S. Chou (FNAL), ICHEP 2016

15



The sarantapede

* An end-coupled “transmon” qubit with ~40 legs

fast flux qontrol

Aaron S. Chou (FNAL), ICHEP 2016 16




QND Detector = qubit + fast cavity
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Sensing photon number with a qubit

h
H ~ hwya'a + i(w; +2ya'a)o,
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Theory: J. Gambetta, A. Blais, ..., S. Girvin, and R. J. Schoelkopf, PRA 94 123602 (2005)
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Prototype for 10 GHz axion QND detector

100 um

g

Superconducting qubit in field-free
bucking coil region acts as an
amplitude—>frequency transducer for
QND measurements.

Qubit frequency shifts by 10 MHz per
photon deposited in axion cavity.
Successful “spin-flip” of qubit
confirms presence of cavity photon.

Axion scattering
cavity dipped into
" high B-field region

Akash Dixit, Aaron Chou, David Schuster,
R&D in progress Aaron S. Chou (FNAL), ICHEP 2016 19



What are the improvements one can realistically
expect from qubit-based QND readout for
high frequency axion detectors?

Aaron S. Chou (FNAL), ICHEP 2016
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dN/dt [Hz]

Thermal photon emission rates are negligible

%
e Ory. o
X %
&2
100 N ).7_\
JEI N\
WWE--"""" "N - o
-------------- . 0\‘
.Se ...* \5\‘s ‘\
102 SQ\' No‘ N (&) N @f’
%o,
10 .
Existing cryogenic experiments:
1TE™ superCDMS = 30 mK
COURE, CRESST =15 mK '
10 \
Orders of magnitude noise : B
10® == reduction below SQL possible! | '
1 | 1 | | L1 1 I | | ‘\. 1 1 | | ‘\I 1 I ‘s \
-1
10 1 10 GHz]
Aaron S. Chou (FNAL), ICHEP 2016 21



dN/dt [Hz]

—
o
3

10*

10°

10°

10

10

10°

—
Q

Another background “photon” source:
QND false positives from read errors

Error
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QND reduces required N_, by factor of 6, or
alternatively extends frequency range for fixed N_,

# unit cavities needed to beat background noise

10
cavities

Main R&D focus should be
to further reduce the QND
error rate, which limits the
improvement.

Another order of
magnitude background
reduction should be
possible.

Aaron S. Chou (FNAL), ICHEP 2016
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Reducing noise is cheaper than increasing signal

Aaron S. Chou (FNAL), ICHEP 2016
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A fun summer at Fermilab!
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