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Low Mass Dark Matter (<10 GeV)

An original DM candidate (Lee and Weinberg 1977)
“Ruled out” (or at least not thought about much) for many years
DAMA excess brings them back - turns out they weren't ruled out
e Inlast decade, several anomalies add excitement
¢ e.g. Pamela/FERMI CoGeNT/CDMS-Si/CRESST
Many anomalies are now resolved, but excitement remains

e “| think light WIMPs are more theoretically motivated than 10 years ago” -
Neal Weiner, CIPANP 2015

Supersymmetry, asymmetric dark matter, minimalist, dark sector, etc.

 Many existing candidates that evade all constraints, including collider
constraints
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What do you need for low mass?
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What do you need for low mass?

dR L0 00A2 9
- — - F
dQ  my 8 2m?2 < Q) %

Um = \/QmN/Qm% Vese = 944 km /s (current value)
: M NIy,
mp 1S mass of nucleus m, =
MmN —+ My

e | ow threshold

* Low mass target (for better kinematic match to the
dark matter mass)

e For given Q, v, is minimized when m, =m,



What do you need for low mass?
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What don't you need for low mass?

e Aot of mass
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LUX-Zeplin (LZ)

e 7 tonne active LXe TPC

e Heavy target

* Excellent self shielding
* (Good discrimination
 Low threshold (<3 keV)

e 31 Institutions, ~200
people

 To be located at Sanford
Lab in SD
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Would be nice
to extend ~*
further down
here!

LUX-Zeplin (LZ) \Z
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Can we add He/Ne to LXe?

Dissolve small quantities of He or Ne in liquid xenon

Extend the reach of a detector like LZ (or Xenon1T or PandaX,
etc)

Add new targets to field of direct detection
* No current experiments using helium or neon

Capitalize on investment in large detectors by adding
flexibility
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How much could we get in”?

No published measurements

Preliminary test at Fermilab
shows 0.1% He in LXe by mass
'S easily achievable

e 1 bar of partial pressure

e (Consistent with measurements
from LUX

Expected to scale with mass ratio
(e.g. 0.5% Ne)

Can we get more in?

 [emperature dependence?
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Backgrounds

* Helium and neon have no long 10
lived isotopes £
» No new backgrounds 5101 :
introduced S

4§100 —Liqu?d xer?on

e Detector is already built of low = | —Liquid helium

" 10_1 ‘ e R
background materials = TP "

Gamma energy [MeV]

» Keep excellent self shielding of LXe (not possible with LNe or
LHe-only detector)
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Signal detection

e Helium and neon scintillate in harder UV
e 80nmvs 175 nm in LXe

* Those photons will wavelength shitt in the xenon to 175 nm

e See, for example, xenon doped in argon (JINST 9, PO6013, among

others)
R11410

e Keep same photon detection scheme!
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Signal yield

o Strong quenching tfactor for nuclear recoils in liquid xenon
(Lindhard factor)

* Lessthan 20% of a 7 keV ——————
| | Fraction of Xe recoil energy
recoll event goes Into going into signal

detectable signal | /
e The rest goes into nuclear ~%%— ‘ *

collisions that lead to heat "y IS

Recoil energy [keV]

o
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N

 Helium/Neon are light nuclei, meaning more energy goes into
electronic channels -> more signal
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Signal yield

Recoil | Lindhard | SRIM

Xenon 0.02 0.02
Neon 0.20 0.09

Helium 0.68 0.69

Table 1: Estimated fraction of energy given to
electronic stopping for nuclear recoils (not ac-
counting for secondary cascades) from Xe, He,
and Ne recoils in LXe, calculated using Lindhard
theory [41] or the SRIM simulation package [42].

* At worst, we can expect a factor of 3.5 more signal for helium
recolls in LXe
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Key questions

 What is the true signal yield?

 What happens to discrimination?

(a) Tritium ER Calibration
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Pulsed, mono-energetic neutrons

Scattering angle, O

Neutron detector

* Pulsed, monoenergetic beam (at Notre Dame) to
measure response of to nuclear recoils of known

energy

* Tunable nuclear recoil energy by changing the
neutron energy and the scattering angle

— Neutrons of 500 keV - 1.5 MeV
— Recoils of a few keV up to 50 keV

— Successful measurements in LAr (1406.4825,
1306.5675)
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25

Counts/Hour/0.5 keV

SCENE

e For doping measurement, for a given scattering angle, He/Ne recoils

have more energy
* Before accounting for increased signal

* Pushes the peak out past the xenon backgrounad

Simulated Energy Deposition: Xenon/Helium(0.1%), 90% multiple scatter rejection Simulated Energy Deposition: Xenon/Helium(0.1%), 90% multiple scatter rejection
Neutron Beam E=100keV, 22.5 degree scattering angle Neutron Beam E=100keV, 45 degree scattering angle
> 25
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SCENE-like measurement measures
vield and S1/52 response v. energy!
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He/Ne doping in LXe

Physically possible

Keep low background level achieved in LXe TPC
Same signal readout with LXe sensitive light detectors
Increased signal yield from He/Ne recoils

* Lower energy thresholds for WIMP-He/Ne scattering

Properties measurable using existing techniques
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What’s the catch?

* At very low thresholds (where we want to go), we hit coherent scattering
of neutrinos

RI/ coh 9 9
’ ~ N“/A
R, /

* In doped LXe, N is still ~70, but Ais now 4 or 20, instead of ~130

* Hit the neutrino background at x1000 higher WIMP cross section for
helium
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Preliminary projection
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 Location of LZ Helium lines depends critically on assumed signal yield (conservative
assumption of factor of 3 shown here)

e Can get around neutrino backgrounds with more He signal

 Currently not using any spectral information (cut and count is not ideal)
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He/Ne doping in LXe

Physically possible
Keep low background level achieved in LXe TPC

Same signal readout with LXe sensitive light detectors

Increased signal yield from He/Ne recoils

* Lower energy thresholds for WIMP-He/Ne scattering
Properties measurable using existing techniques

Coherent neutrino scattering background A

Possible mitigation with higher signal or spectral analysis 7
»
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He/Ne doping in LXe

Physically possible \/

Keep low background level achieved i " “
Same signal readoit e P\ rgant detectors \/
Anev )

IncrecW 0\‘\““ flrom e/Ne recoils \/
* Lower energy thresholds for WIMP-He/Ne scattering \/
Properties measurable using existing techniques \/
Coherent neutrino scattering background A

Possible mitigation with higher signal or spectral analysis?
®
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Backup
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He diffusion through PMT

Example for ET9226 PMT

After pulsing from helium diffusion in

Rise in PMT internal pressure when exposed to pure helium at 1 atm

tubes is a well known problem

Ditffusion exponentially suppressed by

temperature (Arrhenius relationship)

Internal Pressure / torr

R11410 has a surprisingly thick

1.E-07 T f T T T T
1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

window (3 mm)

Calculation suggests 10 years at 1 e

bar/165 K before reaching significant
after pulsing

Needs confirmation...
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