

Hadron Spectroscopy at BESIII

Shan JIN

Institute of High Energy Physics

On Behalf of the BESIII Collaboration

ICHEP2016, August 4, Chicago

BEPCII and **BESIII**

Beam energy: 1.0 ~ 2.3 GeV

Luminosity: 1.0×10³³ cm⁻²s⁻¹ (reached in April 5th, 2016)

2004: BEPCII upgrade, BEPCIII construction

2008: test run

2009 ~ now: physics run

BESIII Detector

Main Drift Chamber (MDC)

 $\sigma_P/P = 0.5\% (1 \text{ GeV})$ $\sigma_{dE/dx} = 6\%$

Time of Flight (TOF)

 σ_T : 90 ps (barrel) 110 ps (endcap)

Super-Conducting Magnet

1.0 T (2009) 0.9 T(2012)

Electromagnetic Calorimeter

(EMC)

CsI (Tl)

 σ_E/\sqrt{E} = 2.5% (1 GeV)

 $\sigma_{\mathrm{z},\varphi} = 0.5 - 0.7 \,\mathrm{cm}/\sqrt{\mathrm{E}}$

μ Counter (MUC)

8 - 9 layers RPC

 $\delta_{R\Phi} = 1.4 \text{ cm} \sim 1.7 \text{ cm}$

Data Collected at BESIII

World largest J/ ψ , ψ (3686), ψ (3770), ...

produced directly from e⁺e⁻ collision — ideal factory to study hadron spectroscopy

Multi-quark State, Glueball and Hybrid

Hadrons consist of 2 or 3 quarks:

Naive Quark Model:

Meson
$$(q \overline{q})$$

Baryon $(q q q)$

- New forms of hadrons:
 - Multi-quark states: Number of quarks >= 4
 - Hybrids: qqg, qqqg...
 - Glueballs: gg, ggg ...

Lots of candidates, but new forms of hadrons have not been established yet!

Highlights of latest results on searching for new forms of hadrons at BESIII

• X(pp̄) and X(1835)

- New decay mode of X(1835) \rightarrow K_SK_S η and determinating J^{PC} of X(1835)
- Anomalous $\eta'\pi^+\pi^-$ mass line shape near $p\overline{p}$ mass threshold —— connection between X($p\overline{p}$) and X(1835)

Glueball Searches

- Model independent partial wave analysis of $J/\psi \rightarrow \gamma \pi^0 \pi^0$
- Partial wave analysis of J/ψ→γφφ

• Z_c Structures

- Observation of Z_c(3900)/Z_c(3885), Z_c(4020)/Z_c(4025)
- Non-observation of $Z_c(3900) \rightarrow \omega \pi$

$X(p\overline{p})$

- Discovered by BESII in J/ψ→γpp̄
- Confirmed by BESIII and CLEO-c in $\psi(3686) \rightarrow \pi^+\pi^- J/\psi$, $J/\psi \rightarrow \gamma p \overline{p}$
- Confirmed by BESIII in $J/\psi \rightarrow \gamma p \overline{p}$ and its J^{PC} determined by PWA

- \checkmark M = $1832^{+19}_{-5}^{+18}_{-17} \pm 19 \text{ MeV/c}^2$
- $\checkmark \Gamma = 13 \pm 19 \text{ MeV/c}^2 (< 76 \text{ MeV/c}^2 @ 90\% \text{ C.L.})$

Chinese Phys. C34, 421 (2010)

$ψ(3686) \rightarrow π^{+}π^{-}J/ψ, J/ψ \rightarrow γp\overline{p}$ 80 CLEO-C 60 70 60 70 60 70 60 70 70 60 70 70 60 70 70 60 7

Hadron Spectroscopy at BESIII

PRD 82, 092002 (2010)

PRL 108, 112003 (2012)

X(1835)

- Discovered by BESII in J/ψ→γη'π⁺π⁻
- Confirmed by BESIII in J/ψ→γη'π⁺π⁻

$$\checkmark$$
 M = 1836.5 \pm 3.0^{+5.6}_{-2.1} MeV/ c^2

- $\checkmark \Gamma = 190 \pm 9^{+38}_{-36} \text{ MeV}/c^2$
- ✓ Angular distribution is consistent with 0⁻¹

Phys. Rev. Lett. 95, 262001 (2005)

Phys. Rev. Lett. 106, 072002 (2011)

Hadron Spectroscopy at BESIII

Observation of X(1835) in $J/\psi \rightarrow \gamma K_S K_S \eta$

- Use 1.3×10⁹ J/ψ events collected by BESIII in 2009 and 2012
- Clear structure on mass spectrum of $K_sK_s\eta$ around 1.85 GeV/ c^2
- Strongly correlated to f₀(980)
- PWA for M(K_sK_s) < 1.1 GeV/ c^2

PRL 115, 091803 (2015)

New decay mode of $X(1835) \rightarrow K_s K_s \eta$ and determination J^{PC} of X(1835)

X(1560)

- $J^{PC}=0^{-+}$; $X(1560)\to K_SK_S\eta$ (> 8.9 σ)
- $M = 1565 \pm 8^{+0}_{-63} \text{ MeV}/c^2$
- $\Gamma = 45^{+14+21}_{-13-28} \text{ MeV}/c^2$
- Consistent with η(1405)/η(1475) (from its tail) within 2.0σ

X(1835)

- J^{PC} determined to be 0⁻⁺
- $X(1835) \rightarrow K_S K_S \eta$ (> 12.9 σ), dominated by $f_0(980)$ production
- $M = 1844 \pm 9^{+16}_{-25} \text{ MeV}/c^2$
- $\Gamma = 192^{+20+62}_{-17-43} \text{ MeV}/c^2$
- Consistent with X(1835) parameters obtained from $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
- $\mathfrak{B}(J/\psi \to \gamma X(1835)) \cdot \mathfrak{B}(X(1835) \to K_S K_S \eta) = (3.31^{+0.33}_{-0.30} + 1.96_{-1.29}) \times 10^{-5}$

PRL 115, 091803 (2015)

X(1835) and $X(p\overline{p})$

X(1835)	$X(p\overline{p})$		
$M = 1844 \pm 9^{+16}_{-25} \text{ MeV}/c^2$	$M = 1832^{+19}_{-5} {}^{+18}_{-17} \pm 19 \text{ MeV}/c^2$		
$\Gamma = 192^{+20+62}_{-17-43} \text{ MeV}/c^2$	$\Gamma = 13 \pm 19 \text{ MeV}/c^2 (< 76 \text{ MeV/c}^2 @ 90\% \text{ C.L.})$		
0-+	0-+		
p̄p bound state? η' excitation? glueball?	pp̄ bound state? 		
•••			
The SAME state?			

Anomalous line shape of $\eta' \pi^+ \pi^-$ near the $p \overline{p}$ mass threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

- Use 1.09×10⁹ J/ψ events collected by BESIII in 2012
- Two decay modes of η'
 - η'⇒γπ⁺π⁻
 - $\eta' \rightarrow \eta \pi^+ \pi^-, \eta \rightarrow \gamma \gamma$
- Clear peaks of X(1835), X(2120), X(2370), η_c , and a structure near 2.6 GeV/ c^2
- A significant distortion of the $\eta'\pi^+\pi^-$ line shape near the $p\overline{p}$ mass threshold

Anomalous line shape of $\eta' \pi^+ \pi^-$ near the $p\bar{p}$ mass threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

- Simultaneous fits to two η' decay modes
- Simple Breit-Wigner function fails in describing the $\eta'\pi^+\pi^-$ line shape near the $p\overline{p}$ mass threshold
- Two typical circumstances where an abrupt distortion of a resonance's line shape shows up
 - Threshold structure caused by the opening of an additional pp decay mode
 - Use the Flatté formula for the line shape
 - Interference between two resonances with one very narrow close to threshold
 - Use coherent sum of two Breit-Wigner amplitudes for the line shape

PRL 117, 042002 (2016)

$$\log \mathcal{L} = 630503.3$$

Anomalous line shape of $\eta'\pi^+\pi^-$ near the $p\bar{p}$ mass threshold in $J/\psi \rightarrow \gamma \eta'\pi^+\pi^-$ — Model I

Use the Flatté formula for the line shape

•
$$T = \frac{\sqrt{\rho_{out}}}{\mathcal{M}^2 - s - i \sum_k g_k^2 \rho_k}$$

•
$$\sum_{k} g_{k}^{2} \rho_{k} \simeq g_{0}^{2} (\rho_{0} + \frac{g_{p\bar{p}}^{2}}{g_{0}^{2}} \rho_{p\bar{p}})$$

• $g_{p\bar{p}}^2/g_0^2$ is the ratio between the coupling strength to the p \bar{p} channel and the summation of all other channels

The state around 1.85 GeV/c^2	
\mathcal{M} (MeV/ c^2)	$1638.0_{-121.9-254.3}^{+121.9+127.8}$
$g_0^2 \; ((\text{GeV}/c^2)^2)$	93.7 +35.4 +47.6
$\mathrm{g}_{\mathrm{p}\overline{\mathrm{p}}}^{2}/\mathrm{g}_{0}^{2}$	$2.31 ^{+0.37}_{-0.37} ^{+0.83}_{-0.60}$
M_{pole} (MeV/ c^2) *	$1909. 5_{-15.9-27.5}^{+15.9+9.4}$
Γ_{pole} (MeV/ c^2) *	$273. 5_{-21.4-64.0}^{+21.4+6.1}$
Branching Ratio	$(3.93^{+0.38+0.31}_{-0.38-0.84}) \times 10^{-4}$

^{*} The pole nearest to the $p\bar{p}$ mass threshold

 $\log \mathcal{L} = 630549.5$

Significance of $g_{
m p}^2/g_0^2$ being non-zero is larger than 7σ

X(1920) is needed with 5.7 σ

A pp moleculelike state?

Anomalous line shape of $\eta' \pi^+ \pi^-$ near the $p \overline{p}$ mass threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^- - Model II$

Use coherent sum of two Breit-Wigner amplitudes

•
$$T = \frac{\sqrt{\rho_{out}}}{M_1^2 - s - iM_1\Gamma_1} + \frac{\beta \cdot e^{i\theta} \cdot \sqrt{\rho_{out}}}{M_2^2 - s - iM_2\Gamma_2}$$

X(1835)	
$M (MeV/c^2)$	1825.3 +2.4 +17.3
$\Gamma ({ m MeV}/c^2)$	245.2 +14.2 +4.6
B.R. (constructive interference)	$(3.01^{+0.17}_{-0.17}{}^{+0.26}_{-0.28}) \times 10^{-4}$
B.R. (destructive interference)	$(3.72^{+0.21}_{-0.21}{}^{+0.18}_{-0.35}) \times 10^{-4}$

A pp bound state?

X(1870)	
$M (MeV/c^2)$	$1870.2^{+2.2+2.3}_{-2.3-0.7}$
$\Gamma ({\rm MeV}/c^2)$	$13.0_{-5.5}^{+7.1}_{-3.8}^{+2.1}$
B.R. (constructive interference)	$(2.03^{+0.12}_{-0.12}{}^{+0.43}_{-0.70}) \times 10^{-7}$
B.R. (destructive interference)	$(1.57^{+0.09+0.49}_{-0.09-0.86}) \times 10^{-5}$

 $\log \mathcal{L} = 630540.3$

Significance of narrow X(1870) is larger than 7σ

X(1920) is not significant

Anomalous line shape of $\eta'\pi^{\dagger}\pi^{-}$ near $p\overline{p}$ mass threshold —— connection between X(1835) and X($p\overline{p}$)

- Both models fit the data well with almost equally good quality
 - Cannot distinguish them with current data
 - Suggest the existence of a state, either a broad state with strong couplings to $p\overline{p}$, or a narrow state just below the $p\overline{p}$ mass threshold
 - Support the existence of a $p\bar{p}$ molecule-like state or bound state
- To understand the nature of the state(s)
 - More J/ψ data to distinguish two models
 - Study line shapes in other decay modes
 - $J/\psi \rightarrow \gamma p \overline{p}$
 - $J/\psi \rightarrow \gamma K_S K_S \eta$
 - ...

Glueballs

- Unique particle formed by non-Abel Gauge self-interactions
- → Direct test of QCD
- Lattice QCD prediction
 - 0⁺⁺ ground state: 1~2 GeV/c²
 - 2⁺⁺ ground state: 2.3~2.4 GeV/c²
 - 0⁻⁺ ground state: 2.3~2.6 GeV/c²
- J/ ψ radiative decays are believed to be an ideal place to search for glueballs.

Model Independent PWA of $J/\psi \rightarrow \gamma \pi^0 \pi^0$

• Use 1.3×10⁹ J/ψ events collected by BESIII in 2009 and 2012

- $\pi^0\pi^0$ system
 - Very clean and larger statistics
 - Many broad and overlapping resonances (parameterization challenging)
 - Model independent PWA (MIPWA)

- ✓ More than 440,000 reconstructed events
- ✓ Background level ~ 1.8%

Model Independent PWA of $J/\psi \rightarrow \gamma \pi^0 \pi^0$

- ✓ Extract amplitudes in each $M(\pi^0\pi^0)$ mass bin
- ✓ Significant features of the scalar spectrum includes structures near 1.5, 1.7 and 2.0 GeV/c²
- ✓ Multi-solution problem in MIPWA is usually unavoidable.
- Only Model Dependent
 PWA of global PWA fit
 can rigerously extract
 resonance parameters,
 but cross-check between
 MDPWA and MIPWA is
 helpful.

Hadron Spectroscopy at BESIII

PWA of $J/\psi \rightarrow \gamma \phi \phi$

- Use 1.3×10^9 J/ ψ events collected by BESIII in 2009 and 2012
- PWA procedure (applied to most published BESIII PWA results)
 - Covariant tensor formalism
 - Data-driven background subtraction
 - Resonances are parameterized by relativistic Breit-Wigner with constant width
 - Resonances with significance $> 5 \sigma$ are selected as components in solution

PWA of J/ψ→γφφ

Pesudoscalar:

 $\eta(2225)$ confirmed $\eta(2100)$ and X(2500)

Dominant

Tensor:

 $f_2(2010), f_2(2300), f_2(2340)$: strong $f_2(2340)$ production — tensor glueball candidate?

Resonance	${\rm M}({\rm MeV}/c^2)$	$\Gamma({\rm MeV}/c^2)$	B.F. $(\times 10^{-4})$	Sig.
$\eta(2225)$	$2216^{+4}_{-5}{}^{+18}_{-11}$	$185^{+12}_{-14}{}^{+44}_{-17}$	$(2.40 \pm 0.10^{+2.47}_{-0.18})$	28.1σ
$\eta(2100)$	$2050^{+30}_{-24}{}^{+77}_{-26}$	$250^{+36+187}_{-30-164}$	$(3.30 \pm 0.09^{+0.18}_{-3.04})$	21.5σ
X(2500)	$2470^{+15}_{-19}{}^{+63}_{-23}$	$230^{+64}_{-35}{}^{+53}_{-33}$	$(0.17 \pm 0.02^{+0.02}_{-0.08})$	8.8σ
$f_0(2100)$	2102	211	$(0.43 \pm 0.04^{+0.24}_{-0.03})$	24.2σ
$f_2(2010)$	2011	202	$(0.35 \pm 0.05^{+0.28}_{-0.15})$	9.5σ
$f_2(2300)$	2297	149	$(0.44 \pm 0.07^{+0.09}_{-0.15})$	6.4σ
$f_2(2340)$	2339	319	$(1.91 \pm 0.07^{+0.72}_{-0.69})$	10.7σ
0^{-+} PHSP			$(2.74 \pm 0.15^{+0.16}_{-1.48})$	6.8σ

Phys. Rev. D 93, 112011 (2016)

✓ Well consistent with the results from Model-independent PWA

Summary of Z_c structures observed at BESIII

■ If these structures are real QCD states, charged Z_c decays into $\pi^{+/-}$ J/ψ $(\pi^{+/-}h_c) \rightarrow$ at least four valence quarks to satisfy charge= ± 1 and strong couplings to ccbar components.

BESIII: a summary of Z_c observations

Zc	Mass (MeV/c²)	Width (MeV)	Decay	Process	[Ref]
$Z_{c}(3900)^{\pm}$	3899.0±3.6±4.9	46±10±20	$\pi^{\pm}J/\psi$	$e^+e^- o\pi^+\pi^-J/\psi$	[1]
$Z_c(3900)^0$	3894.8±2.3±2.7	29.6±8.2±8.2	$\pi^0 J/\psi$	$e^+e^- o\pi^0\pi^0 J/\psi$	[2]
	3883.9±1.5±4.2 Single D tag	24.8±3.3±11.0 Single D tag	$(\boldsymbol{D}\overline{\boldsymbol{D}}^*)^{\pm}$	$e^+e^- o (D\overline{D}^*)^{\pm}\pi^{\mp}$	[3]
$Z_{c}(3885)^{\pm}$	3881.7±1.6±2.1 Double D tag	26.6±2.0±2.3 Double D tag	$(\boldsymbol{D}\overline{\boldsymbol{D}}^*)^{\pm}$	$e^+e^- o (D\overline{D}^*)^{\pm}\pi^{\mp}$	[4]
$Z_{c}(3885)^{0}$	3885.7 ^{+4.3} _{-5.7} ±8.4	35 ⁺¹¹ ₋₁₂ ±15	$(D\overline{D}^*)^0$	$e^+e^- o (D\overline{D}^*)^0\pi^0$	[5]
$Z_c(4020)^{\pm}$	4022.9±0.8±2.7	7.9±2.7±2.6	$\pi^{\pm}h_c$	$e^+e^- o\pi^+\pi^-h_c$	[6]
$Z_c(4020)^0$	4023.9±2.2±3.8	fixed	$\pi^0 h_c$	$e^+e^- ightarrow\pi^0\pi^0h_c$	[7]
$Z_c(4025)^{\pm}$	4026.3±2.6±3.7	24.8±5.6±7.7	$D^*\overline{D}^*$	$e^+e^- o ({m D}^*\overline{m D}^*)^\pm \pi^\mp$	[8]
$Z_c(4025)^0$	4025.5 ^{+2,0} _{-4.7} ±3.1	23.0±6.0±1.0	$D^*\overline{D}^*$	$e^+e^- ightarrow (D^*\overline{D}^*)^0\pi^0$	[9]

^[1] PRL 110,252001; ^[2] PRL 115, 112003; ^[3] PRL 112, 022001; ^[4] PRD 92, 092006 ^[5] PRL 115, 222002; ^[6] PRL110, 252001; ^[7] PRL 113,212002; ^[8] PRL 112, 132001 ^[9] PRL 115, 182002

- Charged and neutral Z_c's are consistent with isospin triplets expectations.
- Mass and widths of $Z_c(3900)$ and $Z_c(3885)$ (also $Z_c(4020)$ and $Z_c(4025)$) are consistent within $2\sigma \rightarrow$ the same states?

Nature of Z_c?

- If these structures are real QCD states, charged Z_c decays into $\pi^{+/-}$ J/ψ ($\pi^{+/-}h_c$) \rightarrow at least four valence quarks to satisfy charge= ± 1 and strong couplings to ccbar components. \rightarrow e.g., likely to be $D\overline{D}^*$ molecular state.
- Other possible non-resonant interpretations:
 - Threshold Cusps? (PRD91, 034009 (2015))
 - Threshold effect from ATS (Anomalous Triangle Singularity: PLB753 (2016) 297-302)
- It is noticed that, so far, at least 4 LQCD groups have tried to find Z_c states in their calculations, but all failed.
- Light hadron decays: If observed, threshold effect can be excluded.

 \rightarrow Naiive expectations from η_c decays, the partial width to an exclusive light hadron mode is typically ~500 keV.

Search for light hadron decays of Z_c in $e^+e^- \to \pi Z_c(3900) \to \pi(\omega\pi)$

$$\sqrt{s} = 4.260 \,\text{GeV}$$

Phys. Rev. D92, 032009 (2015)

• No significant $Z_c \rightarrow \omega \pi$ is observed:

$$\sigma(e^+e^- \to \pi Z_c(3900) \to \pi(\omega\pi)) < 0.26 \text{ pb } @ 4.23 \text{ GeV}$$

 $\sigma(e^+e^- \to \pi Z_c(3900) \to \pi(\omega\pi)) < 0.18 \text{ pb } @ 4.26 \text{ GeV}$

Compared to sum of $Z_c^+ \to J/\psi \pi^+$ and $Z_c^+ \to (D\bar{D}^*)^+$:

$$\Gamma(Z_c^+ \to \omega \pi^+) < 0.2\% \Gamma_{\text{tot}} \sim 60 \text{keV}$$

ccbar annihilation of Z_c decays is suppressed \rightarrow threshold effect cannot be ruled out.

Summary

- Highlights of latest results on searching for new forms of hadrons at BESIII:
 - Observation of X(1835) in $J/\psi \rightarrow \gamma K_S K_S \eta$
 - New decay mode of X(1835) \rightarrow K_sK_s η and J^{PC} of X(1835) determined: 0⁻⁺
 - Observation of anomalous $\eta' \pi^+ \pi^-$ line shape near $p \overline{p}$ mass threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
 - Support the existence of a $p\bar{p}$ bound state or molecule-like state
 - Model independent partial wave analysis (MIPWA) of $J/\psi \rightarrow \gamma \pi^0 \pi^0$
 - Useful information for 0⁺⁺, 2⁺⁺ components; multi-solution problem exists in MIPWA.
 - Partial wave analysis of J/ψ→γφφ
 - Many 0⁻⁺, 2⁺⁺ mesons observed —— any glueball candidates?
 - Observation of Z_c(3900)/Z_c(3885), Z_c(4020)/Z_c(4025) structures
 - If real QCD states, they should contain at least 4 quarks.
 - Threshold effect needs to be excluded first.
- More results are expected in the future!

backup

Structures around 1.8 GeV/ c^2

