Prompt photons at hadron colliders

Alessandra Lucà for the ATLAS and CDF Collaborations

Outline

- Introduction
- The ATLAS and CDF detectors
- Measurement of prompt isolated photon production cross sections at 8 TeV with the ATLAS detector
- Measurement of the inclusive isolated prompt photon production cross section in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV using the full CDF data sample
- Future plans
- Summary

Prompt photon production at hadron colliders

With prompt photons we can

- *Test perturbative Quantum Chromodynamics (pQCD) with high precision
- Provide information on the parton distribution functions (PDFs)
- Constrain models of parton fragmentation (FFs)
- Understand backgrounds to important processes (such as $H \rightarrow \gamma \gamma$)

PROMPT PHOTONS:

not from hadron decays

Direct photon

A. Compton

B. Annihilation

Fragmentation photon (C)
 BUT suppressed with isolation

Differential contributions of subprocesses

Predictions for the single subprocesses contribution obtained from the MCFM calculation. (e.g. proton-antiproton collisions @ 2 TeV)

The ATLAS detector at the Large Hadron Collider

- Calorimetry (EM+Had)
- Photon/e- ID
 Tracking +ECAL

ATLAS superimposed on the building 40 at CERN

The CDF detector at the Tevatron collider

Measurement of prompt isolated photon production cross sections at 8 TeV with the ATLAS detector

arXiv:1605.03495v1 [hep-ex]

Photon selection and identification

 \Rightarrow Data set $L = 20.2 \text{ fb}^{-1}$

Arr Kinematic region $E_T^{\gamma} > 25 \; \mathrm{GeV}$

 $|\eta^{\gamma}| < 1.37$ and $1.56 \le |\eta^{\gamma}| < 2.37$

 \approx Isolation $E_T^{iso}(\Delta R=0.4)<4.8~{\rm GeV}+4.2\times 10^{-3}\times {\rm E}_{\rm T}^{\gamma}$

☆ ID criteria

9 shower-shape variables based on calorimeter energy deposition.

 Id criteria independently tuned for standard and converted photons (when 2 tracks point to the calorimeter cluster).

Background subtraction

 Main BKG from hadron decays (10⁵ jets/γ)

- Removed by a data-driven technique
 - · two-dimensional sidebands method

Background from electrons subtracted, based on $Z\rightarrow ee$.

Main uncertainties

- Energy scale
- Admixture between direct and fragmentation
- Correlations between identification and isolation in background

Prompt isolated photon production cross sections

Unfolded with a bin-by-bin method

using Pythia, (and Sherpa as a cross-check)

Comparison with JetPhox, with CT10 PDF's.

E_T^{γ} - differential cross sections

 The NLO JetPhox calculation for most of the E_T range has similar shape but lie below data.

E_T^{γ} - differential cross sections

- Comparison with JetPhox NLO calculation, as well as Pythia8 (CTEQ6LI) and SHERPA (CTI0)
- Other PDF sets give almost identical predictions

Measurement of the inclusive isolated prompt photon production cross section using the full CDF data set

cdf-note 11180

Photon selection and identification

$$L = 9.5 \text{ fb}^{-1}$$

lpha Kinematic region $\,E_T^{\gamma}\,>30\,\,{
m GeV}$

$$E_T^{\gamma} > 30 \text{ GeV}$$

$$|\eta^{\gamma}| < 1.0$$

☆ Isolation

$$E_T^{iso}(\Delta R = 0.4) < 3.0 \text{ GeV} + 0.2 \times (E_T^{\gamma} - 20 \text{ GeV})$$

☆ ID criteria

Variables related to energy deposit in calorimeter and track info

☆ Non-collision backgrounds

suppressed via

- Cosmic Rays veto: photon identification time consistent with the collision time
- Low Missing Transverse Energy: MET/ E_T^{γ} < 0.8
 - with this cut also leptonic W boson decays are suppressed

Signal fraction

Main BKG from hadron decays (10^5 jets/ γ)

Signal fraction

from Max Likelihood fit of data ANN output distribution to a linear combination of signal and background MC ANN templates,

Signal and background normalized to the data according to the fit result in a particular E_{T} range

Main uncertainties

- Energy scale
- Parton shower generator
- Energy isolation

The solid line represents the total systematic uncertainty while the dashed lines correspond to the single contribution.

E_T^{γ} - differential cross section

Unfolded with a bin-by-bin method

 using Pythia, (and Sherpa as a cross-check)

Compared to

- PYTHIA (CTEQ5L PDFs)
- SHERPA (CTI0 PDFs)
- MCFM (PDFs: MRST2008

NLO, FFs: GdRG LO)

MCFM (corrected for UE contributions)

E_T^{γ} - differential cross section

Data points centered at I and Data/Model ratio (lines)

 Both PYTHIA and SHERPA predictions describe the shape of the differential cross section

E_τ(GeV)

The NLO MCFM calculation provides the best description of data overall.

Future plans

ATLAS

- ☆ Inclusive photon measurement @ 13 TeV
- □ Diphoton measurement @ 13 TeV
- ☆ Photon+jet @ 8 TeV

· CDF

☆ Photon+jets with the full data set

Summary

- ☆ The ATLAS and CDF experiments are performing high precision pQCD tests with prompt photons
- ☆ We have presented the measurements of prompt isolated photon production cross sections
 - at 8 TeV with the ATLAS detector
 - at 1.96 TeV with the full CDF data set
- Results compared to several theoretical predictions.
 - ATLAS

The NLO JetPhox calculation for most of the E_T range has similar shape but lie below data.

CDF

The NLO MCFM calculation has an overall good agreement

- **☆ More photon studies are in progress:**
 - Stay tuned!

BACKUP

The Tevatron

*

- proton-antiproton collisions at $\sqrt{s} = 1.96 \, \text{TeV}$
- Two interaction points:
 - CDF(Collider Detector at Fermilab)DZero
- Delivered per experiment roughly 12 fb⁻¹ and recorded over 10 fb⁻¹, from 2002–2011 (Run II)

Operated by international collaborations of more than 1000 physicists from ~100 universities and laboratories

• Tracking:

- → Drift chamber, $|\eta|$ <1
- \rightarrow Silicon microstrip tracker, $|\eta|$ <2 allows also for precise vertex reconstruction

Calorimeter:

→ Split in EM (scintillator – lead) and HAD (scintillator – iron) sampling devices, $|\eta|$ <1.1 (central), 1.1< $|\eta|$ <3.6 (plug)

• Muon system:

- \rightarrow Drift chambers outside calorimeter, $|\eta|$ <1.5
- Central electromagnetic calorimeter (IηI<1.1):
 - → Tower segmentation: $\Delta \eta \times \Delta \varphi \approx 0.1 \times 15^{\circ}$
 - → Resolution: $\sigma(E)/E = 13.5\%/E(GeV) \oplus 1.5\%$
 - \rightarrow Proportional chambers (CES) at 6 rad. lengths depth (shower max) give location and 2D profile of the EM showers (position resolution ~2 mm for 50 GeV γ)
 - Focus of this analysis on reconstructed photons in the central region of the detector

- "Central"
 - |η|<1.1
 - Use central calorimeters
- · "Plug"
 - 1.2<lηl<2.8
 - Use forward calorimeters
 - Tracking efficiency lower than in central region
 - Easier to miss a track
 and reconstruct fake object
 as a photon

CDF Detector: EM

- Focus of this analysis on reconstructed photons in the central region of the detector
- EM calorimeter (EM) segmentation:
 - $-\Delta\eta\times\Delta\varphi\sim0.1\times15^\circ$ ($|\eta|<1$)

- Shower max detector (CES)
 strip-wire chamber situated at the shower maximum position (~6 radiation lengths) into Central EM
 - Gives resolution to better distinguish π^0/η —> $\gamma\gamma$ from γ at low E_T
 - Symmetric π° decay:
 - $-\Delta\gamma\gamma \sim 50$ cm/E_T, cluster width ~ 2 cm
 - Can't resolve 2 EM showers above ~50GeV

Non collisional background

The non-collision processes include energetic particles from cosmic rays and the beam halo that mimic the signal of a prompt proton. Cosmic muons are the most important source of non collisional background

Non Collision Background

Signal fraction

- Use of an Artificial Neural Network (ANN) trained to discriminate between prompt photons and the background from meson decays (π^{o} 's, η 's),
 - Signal samples: inclusive photons generated with PYTHIA at a various generated photon pT
 - Background samples: di-jets samples generated with PYTHIA (ISR and FSR removed)

Trained with TMVA (Toolkit for Multivariate Data Analysis)

Photon ID ANN input variables

- Ratio of hadronic to EM transverse energy (HAD/EM)
- Shape in shower max compared to expectation (χ^2 for strips and wires)
- Calorimeter Isolation
- Track isolation
- Ratio of energy at shower max to total EM energy (CES/CEM)
- Lateral sharing of energy between towers compared to expectation

Theoretical Predictions

• PYTHIA 6.216

LO MC generator with CTEQ5L PDFs [T. Sjöstrand et al., JHEP 05, 026 (2006)].

SHERPA 1.4.1

generator with CT10 PDFs.Tree-level matrix element (**ME**) diagrams with one photon and up to three jets, merged with parton shower (**PS**) [T. Gleisberg et al., JHEP 02, 007 (2009)].

These predictions are done at the particle level, which means that they are are directly comparable to our measurements.

MCFM 6.28

Fixed-order **NLO calculation** including non-perturbative fragmentation at LO. PDFs: MRST2008 NLO, FFs: GdRG LO [J. M. Campbell et al., Phys. Rev. D 60, 113006 (1999)] [A. Gehrmann-De Ridder, E.W. N. Glover, Eur. Phys. J. C7, 29-48 (1999)].

For comparisons to data, a correction (C_{UE}) for hadronization and underlying events is applied to this parton-level MC

- C_{UE} = UE/NO UE, where UE/NO UE is the parton level cross section with the underlying events on/off
- C_{UE} , estimated averaging the results in PYTHIA MC generated with the Tune A or DW, is taken from the previous published measurement

E_T^{γ} - differential cross sections

arXiv:1605.03495v1 [hep-ex]

Comparison with JetPhox and PeTeR calculations, with CT10 PDF's