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The context



Report on Physics at a 100 TeV pp Collider

• Volume 1: SM processes (238 pages)

• arXiv:1607.01831

• Volume 2: Higgs and EW symmetry breaking studies (175 pages)

• arXiv:1606.09408

• Volume 3: beyond the Standard Model phenomena (189 pages)

• arXiv:1606.00947

• Volume 4: physics with heavy ions (56 pages)

• arXiv:1605.01389

• Volume 5: physics opportunities with the FCC-hh injectors (14 pages)  

total ~700 pages



Higgs chapter of FCC physics report
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role in this game
• reasonable to expect the same will be true for the Higgs 30-40 yrs after 2012, 

with the measurement of Higgs properties intertwined with the testing for SM 
anomalies

• Great improvement in precision will arise from e+e– colliders [see later talks by D’Enterria 
(FCC-ee), Ruan (CEPC), Lukic (CLIC), Strube (ILC)]. 

• Depending on the configuration (linear vs circular) and energy (ILC vs CLIC), there 
will nevertheless still remain a need for complementary input, which could be 
provided by a 100 TeV pp collider:
• direct probe of EW interactions and EWSB at scales > 1 TeV
• exploration of extended Higgs sectors
• precise measurement of rare Higgs decays and tests of rare production 

mechanisms
• precise determination of top-Higgs coupling and Higgs self-couplings (if ECM of e

+e– colliders will stay below the TeV)

• At the LHC, the Higgs is already an analysis tool, if not a background, in searches of 
new particles (like W/Z and like the top quark). This will be even more true at 100 
TeV!!
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◆2 ⇒ kinematic reach probes large Λ even 

if precision is low

e.g. δO=15% at Q=1 TeV ⇒ Λ~2.5 TeV
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E.g. for δO~10–3 (goal of precision BR measurements at FCC-ee): 

– δOQ~10–1 ⇒ Q ~ 10 v ~ 2.5 TeV 

– δOQ~10–2 ⇒ Q ~ 3 v ~ 750 GeV 



• At LHC, can measure only up to pT~ few hundred GeV ⇒ reduced sensitivity 

to the inner guts of the ggH coupling

• At FCC, orders of magnitude difference between EFT and exact mtop

gg→H at large pT

11



Examples

(See also 
Azatov and Paul arXiv:1309.5273v3)

top squarks in the loop

Grojean, Salvioni, Schlaffer, Weiler arXiv:1312.3317Banfi Martin Sanz, arXiv:1308.4771 

top partners T 
in the loop LHC14

http://arxiv.org/abs/1309.5273v3


SM Higgs at 100 TeV

• Huge production rates imply:

• can afford reducing statistics, with tighter kinematical 
cuts that reduce backgrounds and systematics

• can explore new dynamical regimes, where new tests 
of the SM and EWSB can be done

13

N100 = σ100 TeV × 20 ab–1

N8 = σ8 TeV × 20 fb–1

N14 = σ14 TeV × 3 ab–1



• Hierarchy of production channels changes at large pT(H):
• σ(ttH) > σ(gg→H) above 800 GeV

• σ(VBF) > σ(gg→H) above 1800 GeV

H at large pT

14



• Statistics in potentially visible final states out to several TeV

H at large pT

15



• At LHC, S/B in the H→γγ channel is O( few % )
• At FCC, for pT(H)>300 GeV, S/B~1
• Very clean probe of Higgs production up to large pT(H). 

What’s the sensitivity required to probe relevant BSM 
deviations from SM spectrum? 

• Exptl mass resolution at large pt(H)?

gg→H→γγ at large pT

16



• Stat reach ~1% at pT~100 GeV
• Exptl systematics on BR(μμ)/BR(γγ)? (use same fiducial 

selection to remove H modeling syst’s)

gg→H→μμ at large pT

17



• S/B improves greatly at larger pT

• Stat reach ~1% at pT~100 GeV

• Exptl systematics on BR(Zγ)/BR(γγ)? 

gg→H→Zγ→𝓵𝓵γ at large pT

18



Remarks on gg→H

• Reach for %-level measurement of very rare decay modes 
(Zγ, μμ) (absolute, if B(γγ) or B(ZZ*) known from e+e–, or 
relative w.r.t.  B(γγ) using pp-only data)

• Much larger statistics and pT reach for modes like WW and 
ττ. Needs dedicated studies to check potential precision 
(e.g. systematics from corrections to common fiducial 
regions, impact of neutrinos, …)

• Reach for H→bb ?

19
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to reduce dependence on absolute production rate, ttH coupling, 
lumi, etc: 
• ultimate TH systematics?
• ultimate EXP systematics?
• what are the best decay channels?

• More in general (for all production and decay channels):
• Can high-pt measurements compete with precise BR’s in 

probing EFT couplings?
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WH→Wbb at large MWH
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• Bg level greatly sensitive to bb mass resolution. Can be improved using jet 
substructure studies? => more work required

• Sensitivity to higher-dim ops in the VVH coupling ⇔ B(H→VV*)?

• Systematics on slope of MHV ? (For EFT constraints don’t need absolute rate)

WH→Wbb at large MWH

21

V*
V

H

Q=m(VH)
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- Identical production dynamics: 

o correlated QCD corrections, correlated scale dependence 
o correlated αS systematics 

- mZ~mH ⇒ almost identical kinematic boundaries: 

o correlated PDF systematics 
o correlated mtop systematics

To the extent that the qqbar → tt Z/H contributions are subdominant:

+

For a given ytop, we expect σ(ttH)/σ(ttZ) to be 
predicted with great precision

t

t

H

t

t

Z
t

t

Z

+

+
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arXiv:1507.08169Top Yukawa coupling from σ(ttH)/σ(ttZ)

http://arxiv.org/abs/arXiv:1507.08169


σ(gg→ttZ)/ σ(ttZ) , for pT(Z)> pT,min

14 TeV

100 TeV

pT,min

At 100 TeV, gg→tt X is indeed dominant ....

NB: At lower pT values, gg fraction is slightly larger for ttZ than for ttH, since 
mZ<mH 23
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Cross section ratio stability

scale PDF
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Cross section ratio stability

Production kinematics ratio stability scale PDF
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⇒ huge rates, exploit 

boosted topologies

Events/20ab–1 , with tt→𝓵ν+jets

MLM, Plehn, Reimitz, Schell, Shao  arXiv:1507.08169

http://arxiv.org/abs/arXiv:1507.08169
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⇒ huge rates, exploit 

boosted topologies

Events/20ab–1 , with tt→𝓵ν+jets

- δyt (stat + syst TH) ~ 1% 

- great potential to reduce to similar 
levels δexp syst 
- consider other decay modes, e.g. 2l2nu

Top fat C/A jet(s) with R = 1.2, |y| < 2.5, 
and pT,j > 200 GeV

MLM, Plehn, Reimitz, Schell, Shao  arXiv:1507.08169

http://arxiv.org/abs/arXiv:1507.08169


P.Torrielli, arXiv:1407.1623

Rare production modes:  
any good use for them?



27Slides from R.Contino Higgs chapter overview at Rome’s FCC-week, April 2016



* Results of the recent full-mtop NLO 
calculation (Borowka et al, arXiv: 
1604.06447) not included here (as yet….)

*
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3.4%

using “medium” calorimeter resolution 



impact of detector performance, 1



impact of detector performance, 2

α

default

default default

default



other HH+X production modes



other channels, first assessments ….

λ dependence 
at 14 and 100 
TeV are similar



Quartic Higgs selfcoupling

=> λ4 in [– 4 , 16] at 95%CL

λ4
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• ....
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