Semileptonic decays to excited charmed mesons as a probe for the Standard Model

Work in Collaboration with **Z. Ligeti (LBNL)**, arXiv:1606.09300, submitted to PRD

Florian U. Bernlochner

florian.bernlochner@cern.ch University of Bonn, Germany

Semileptonic decays as a probe for new physics

New Physics: E.g. Decay with charged Higgs boson

Semileptonic decays as a probe for new physics

New Physics: E.g. Decay with charged Higgs boson

Observable:

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)} \tau \bar{\nu}_{\tau})}{\mathcal{B}(B \to D^{(*)} \ell \bar{\nu}_{\ell})}$$
$$\ell = e, \mu$$

Semileptonic decays as a probe for new physics

$$D^{**} = \{D_0^*, D_1^*, D_1, D_2^*\},$$

Particle	$s_l^{\pi_l}$	J^P	m (MeV)	Γ (MeV)
D_0^*	$\frac{1}{2}^{+}$	0^+	2330	270
D_1^*	$\frac{1}{2}$ +	1+	2427	384
D_1	$\frac{\frac{3}{2}}{\frac{3}{2}}$ +	1+	2421	34
D_2^*	$\frac{3}{2}$ +	2^+	2462	48

- 1. Important background for measuring R(D) and R(D*)
 - Poorly understood at this point

Particle	$s_l^{\pi_l}$	J^P	m (MeV)	Γ (MeV)
D_0^*	$\frac{1}{2}^{+}$	0^+	2330	270
D_1^*	$\frac{1}{2}$ +	1+	2427	384
D_1	$\frac{3}{2}$	1+	2421	34
D_2^*	$\frac{3}{2}$ +	2^+	2462	48

- 1. Important background for measuring R(D) and R(D*)
 - Poorly understood at this point
- 2. Offer path to an alternative (but challenging) probe
 - Measurements of R(D**)
 - Important to model inclusive composition

Particle	$s_l^{\pi_l}$	J^P	m (MeV)	$\Gamma \text{ (MeV)}$
D_0^*	$\frac{1}{2}$ +	0_{+}	2330	270
D_1^*	$\frac{1}{2}^{+}$	1+	2427	384
D_1	$\frac{3}{2}^{+}$	1+	2421	34
D_2^*	$\frac{1}{3} + \frac{1}{2}$	2^+	2462	48

- 1. Important background for measuring R(D) and R(D*)
 - Poorly understood at this point
- 2. Offer path to an alternative (but challenging) probe
 - Measurements of R(D**)
 - Important to model inclusive composition
- 3. Important background for certain |V_{cb}| measurements

Particle	$s_l^{\pi_l}$	J^P	m (MeV)	Γ (MeV)
D_0^*	$\frac{1}{2}^{+}$	0_{+}	2330	270
D_1^*	$\frac{1}{2}$ +	1+	2427	384
D_1	$\frac{3}{2}$ +	1+	2421	34
D_2^*	$\frac{1}{3} + \frac{1}{2}$	2^+	2462	48

Starting point for a prediction: the hadronic Currents

Starting point for a prediction: the hadronic Currents

$$\frac{\langle D_{1}^{*}(v',\epsilon)|V^{\mu}|B(v)\rangle}{\sqrt{m_{D_{1}^{*}}m_{B}}} = g_{V_{1}}\epsilon^{*\mu} + (g_{V_{2}}v^{\mu} \text{ and meson mass splittings} |B(v)\rangle = k_{A_{1}}\epsilon^{*\mu\alpha}v_{\alpha}$$

$$\frac{\langle D_{1}^{*}(v',\epsilon)|A^{\mu}|B(v)\rangle}{\sqrt{m_{D_{1}^{*}}m_{B}}} = k_{A_{1}}\epsilon^{*\mu\alpha}v_{\alpha}$$

$$\frac{\langle D_{1}^{*}(v',\epsilon)|A^{\mu}|B(v)\rangle}{\sqrt{m_{D_{1}^{*}}m_{B}}} = ig_{A}\epsilon^{*\mu\alpha\beta\gamma}\epsilon^{*}_{\alpha}v_{\beta}v_{\gamma}'. \qquad (6)$$

$$\frac{\langle D_{2}^{*}(v',\epsilon)|V^{\mu}|B(v)\rangle}{\sqrt{m_{D_{2}^{*}}m_{B}}} = ik_{V}\epsilon^{\mu\alpha\beta\gamma}\epsilon^{*}_{\alpha\sigma}v^{\sigma}v_{\beta}v_{\gamma}', \qquad (5)$$

Starting point for a prediction: the hadronic Currents

Form factors can be expressed in terms of leading & sub-leading Isgur-Wise functions $\frac{\langle D_1^*(v',\varepsilon)|V^\mu|B(v)\rangle}{\langle D_1^*(v',\varepsilon)|V^\mu|B(v)\rangle} = g_{V_1}\varepsilon^{*\mu} + (g_{V_2}v^\mu)$ and meson mass splittings: $\frac{B(v)}{\langle D_1^*(v',\varepsilon)|V^\mu|B(v)\rangle} = k_{A_1}\varepsilon^{*\mu\alpha}v_{\alpha}$

 $\frac{\sqrt{D_1^*(v',\epsilon)}|A^{\mu}|B(v)}{\langle D_1^*(v',\epsilon)|A^{\mu}|B(v)\rangle} \quad \text{LLSW: PRL 78 (1997) 3995, Phys.Rev.D57:308-330,1998} \\ + (k_{A_2}v^{\mu} + k_{A_3}v'^{\mu}) \epsilon_{\alpha\beta}^* v^{\alpha}v^{\beta},$

Extend this work to include full lepton mass effects, update predictions with available experimental constraints, including predictions for R(D**)

BL:arXiv:1606.09300, submitted to PRD

Example: axial-vector Form Factor of $\,B o D_1 \,\ell\, ar{ u}_{\ell}$

$$\sqrt{6} f_A = -(w+1)\mathbf{7} - \varepsilon_b \{(w-1)[(\overline{\Lambda}' + \overline{\Lambda})\mathbf{7} - (2w+1)\mathbf{7}_1 - \mathbf{7}_2] + (w+1)\eta_b \}$$
$$-\varepsilon_c [4(w\overline{\Lambda}' - \overline{\Lambda})\mathbf{7} - 3(w-1)(\mathbf{7}_1 - \mathbf{7}_2) + (w+1)(\eta_{ke} - 2\eta_1 - 3\eta_3)],$$

leading Isgur-Wise function sub-leading Isgur-Wise functions chromomagnetic contributions mass splittings

Example: axial-vector Form Factor of $B o D_1 \, \ell \, \bar{\nu}_{\ell}$

$$\sqrt{6} f_A = -(w+1) \overline{\mathbf{\tau}} - \varepsilon_b \left\{ (w-1) \left[(\overline{\mathbf{\Lambda}}' + \overline{\mathbf{\Lambda}}) \overline{\mathbf{\tau}} - (2w+1) \overline{\mathbf{\tau}}_1 - \overline{\mathbf{\tau}}_2 \right] + (w+1) \eta_b \right\}
- \varepsilon_c \left[4(w\overline{\mathbf{\Lambda}}' - \overline{\mathbf{\Lambda}}) \overline{\mathbf{\tau}} - 3(w-1)(\overline{\mathbf{\tau}}_1 - \overline{\mathbf{\tau}}_2) + (w+1)(\eta_{ke} - 2\eta_1 - 3\eta_3) \right],$$

leading Isgur-Wise function sub-leading Isgur-Wise functions chromomagnetic contributions mass splittings

All parameters but the mass splittings a priori unknown

Reducing the number of free parameters

Three approximations studied

Approximation A: Expand in small w range

No sub-leading IW at lowest order, drop chromomagnetic terms

$$\tau(w) = \tau(1) [1 + (w - 1) \tau'(1) + \dots],$$
 $w = v_B \cdot v_{D^{**}}$

$$w = v_B \cdot v_{D^{**}}$$

Approximation B₁ and B₂: keep all terms

sub-leading IW at lowest order, drop chromomag. terms

Approx.
$$B_1$$
: $\begin{cases} \frac{3}{2}^+ \text{ states: } \tau_1 = \tau_2 = 0, \\ \frac{1}{2}^+ \text{ states: } \zeta_1 = 0, \end{cases}$
Approx. B_2 : $\begin{cases} \frac{3}{2}^+ \text{ states: } \tau_1 = \bar{\Lambda}\tau, \ \tau_2 = -\bar{\Lambda}'\tau, \\ \frac{1}{2}^+ \text{ states: } \zeta_1 = \bar{\Lambda}\zeta. \end{cases}$

Approximation C: Approx. C:
$$\begin{cases} \frac{3}{2}^+ \text{ states: } \tau_1 = \hat{\tau}_1 \tau, \ \tau_2 = \hat{\tau}_2 \tau, \\ \frac{1}{2}^+ \text{ states: } \zeta_1 = \hat{\zeta}_1 \zeta, \end{cases}$$

Experimental constraints

Three types of experimental constraints

- Total semileptonic branching fractions (all four states)
- Differential semileptonic branching fractions (for D₀* and D₂*)
- Non-leptonic branching fraction measurements (for D₁ and D₂*)

Narrow and Broad state results:

 $\tau(w) = \tau(1) (1 + (w - 1) \tau')$

Allowed 68% and 95% regions with different assumptions for the sub-leading Isgur-Wise function normalization for the normalization and slope of the leading Isgur-Wise function

 $\zeta(w) = \zeta(1) (1 + (w - 1)\zeta')$

Approximation C Predictions

$$R(D^{**}) = \frac{\mathcal{B}(B \to D^{**}\tau \bar{\nu})}{\mathcal{B}(B \to D^{**}l \bar{\nu})},$$

$$R(D^{**}) = \frac{\mathcal{B}(B \to D^{**}\tau \bar{\nu})}{\mathcal{B}(B \to D^{**}l \bar{\nu})}, \qquad \widetilde{R}(X) = \frac{\int_{m_{\tau}^{2}}^{(m_{B}-m_{X})^{2}} \frac{d\Gamma(B \to X\tau \bar{\nu})}{dq^{2}} dq^{2}}{\int_{m_{\tau}^{2}}^{(m_{B}-m_{X})^{2}} \frac{d\Gamma(B \to Xl\bar{\nu})}{dq^{2}} dq^{2}}.$$

matching overlap increases correlation, reduces theory error

Approximation C Predictions

$$R(D^{**}) = \frac{\mathcal{B}(B \to D^{**}\tau \bar{\nu})}{\mathcal{B}(B \to D^{**}l \bar{\nu})}, \qquad \widetilde{R}(X) = \frac{\int_{m_{\tau}^{2}}^{(m_{B}-m_{X})^{2}} \frac{d\Gamma(B \to X\tau \bar{\nu})}{dq^{2}} dq^{2}}{\int_{m_{\tau}^{2}}^{(m_{B}-m_{X})^{2}} \frac{d\Gamma(B \to Xl\bar{\nu})}{dq^{2}} dq^{2}}.$$

$$R(D_2^*) = 0.07 \pm 0.01 ,$$
 $\widetilde{R}(D_2^*) = 0.17 \pm 0.01 ,$ $R(D_1) = 0.10 \pm 0.02 ,$ $\widetilde{R}(D_1) = 0.20 \pm 0.02 ,$ $\widetilde{R}(D_1^*) = 0.06 \pm 0.02 ,$ $\widetilde{R}(D_1^*) = 0.18 \pm 0.02 ,$ $\widetilde{R}(D_0) = 0.08 \pm 0.04 ,$ $\widetilde{R}(D_0) = 0.25 \pm 0.06 ,$ (38)

 $R(D^{**}) = 0.085 \pm 0.012$.

errors include estimated uncertainty from missing chromomagnetic contributions

$$\mathcal{B}(B \to D^{**}\tau\bar{\nu}) = (0.14 \pm 0.03)\%.$$

Approximation C Predictions for $B_s o D_s^{**} \ell \, \bar{\nu}_\ell$

Interesting channels

- D_{s0}* and D_{s1}* very narrow
- Prediction can be made from fitted form factor parameters, not taking into account any SU(3) breaking effects

$$R(D_{s2}^*) = 0.07 \pm 0.01,$$
 $\widetilde{R}(D_{s2}^*) = 0.16 \pm 0.01,$
 $R(D_{s1}) = 0.09 \pm 0.02,$ $\widetilde{R}(D_{s1}) = 0.20 \pm 0.02,$
 $R(D_{s1}^*) = 0.07 \pm 0.03,$ $\widetilde{R}(D_{s1}^*) = 0.20 \pm 0.02,$
 $R(D_{s0}^*) = 0.09 \pm 0.04,$ $\widetilde{R}(D_{s0}^*) = 0.26 \pm 0.05.$

errors include estimated uncertainty from missing chromomagnetic contributions

Helicity amplitudes & New Physics

Included helicity amplitudes in paper; easy to make predictions for New Physics

Example: 2HDM Type II

$$H_t \to H_t^{\rm SM} \left(1 - \frac{\tan^2 \beta}{m_{H^{\pm}}^2} \, \frac{m_b \, q^2}{m_b - m_c} \right).$$

Summary

Presented predictions for R(D**) & R(Ds**)

- Alternative (but experimentally) challenging path to study the discrepancies observed in R(D) and R(D*)
- Can be used to model the signal mix for inclusive $R(X = D + D^* + D^{**})$ contributions, as 1S + 1P contributions almost saturate the inclusive rate
- Predictions for R(D_{s0}*) (spin 0 1P D_s state) offers an interesting probe to validate the enhancement in R(D) that might be within the reach of LHCb due to the clear narrow signal.
- Full expressions in Helicity amplitudes available for all four states, allows to make predictions for various New Physics models easily.

Thank you for your attention!

Backup slides

Dependence on chromomagnetic operators

