

LIU-SPS action list for BE/BI

L. Jensen with input from BL, PI, QP, PM

Introduction

128846	■ Upgrade Transverse diagnostics
128842	Upgrade SPS BGI
128848	Upgrade SPS Orbit Acquisition Electronics
128841	Produce New Fast SPS Wirescanners
128849	Provide fibre optic infrastructure LS1
128847	■ Upgrade Fast Ring BCTs
128844	Provide electronics for fast BLMs
136906	Upgrade synchrotron-light monitors
129721	Provide fibre optic infrastructure LS2
128843	Upgrade ionisation chamber BLMs
	2 128842 128848 128841 2 128849 128847 128844 136906 129721

Input:

• TDR (2014):

http://cds.cern.ch/record/1976692/files/CERN-ACC-2014-0337.pdf (SPS BI page 520)

 Latest BI review with LIU-SPS (Malika/Brennan/Rhodri):

https://indico.cern.ch/event/398944

Upgrade transverse diagnostics (head-tail)

• Request:

- Resolve coherent transverse position within the individual LHC bunches
- Both planes H/V at the same time
- 1000 turn
- >10GHz sampling

• Proposed solution:

- Electronics/software
 - Purchase Guzik digitizer => done (spare from LIU-PS ??)
 - Provide FESA3 class and expert GUI ((T. Levens BI/QP)
- Dismantle old Tektronix scope (BB4)
- Later stage (??):
 - Investigate higher bandwidth detectors (CTF)
 - Cross fingers for Linux support (PCIe) ..

Upgrade BGI

Request:

 Provide relative beam size measurements during SPS cycle (H/V)

Proposed solution

- Magnets:
 - Some changes made during LS1 (3->2)
 - We need green light from OP-SPS to power

• Detectors:

Upgrade cage/MCP similar to LHC -> completed

Electronics

- Update to LHC solution
 - Cabling issues solved however cameras believed to not withstand radiation levels

Software

 New electronics for HV control and acquisition (2016?)

• Issues in the past:

 Space charge effects due to limited magnet strength (protons)

• Actions:

- Understand/solve radiation issues (camera)
- Commission system (BL/SW)
 - Dedicated MD ??
 - Decide next steps in view of LSS5 (LS2)

Upgrade SPS orbit system

Problem:

Maintenance of old system (consolidation)

• LIU/OP request:

- More acquisition modes
- Integrate interlock (fast excursion) and extraction bumps

• Solution:

- Replace old detectors (LS1)
- Tunnel electronics with ADC
- Long coax cables -> fibres
- New acquisition electronics (VFC) with two chains (40MHz/200MHz)

Actions:

- Determine radiation hardness of tunnel electronics
- Assess performance of front-end electronics
- Produce electronics (tunnel and surface) with firmware
- Investigate and implement interlock modes if possible without need for external fast timing synchronisation
- Publish EDMS document with software interfaces for each operational acquisition mode

Upgrade SPS wire-scanners

Request:

- Do scans with 4 PS batches at 450 GeV in the SPS (!)
- BxB acquisition (@40MHz)
- Improve precision with small / low-intensity beams
- Decrease dependency on settings (PM gain etc)
- Both planes H/V at the same time
- Emittance accuracy 10% (absolute)

Solutions:

- New mechanical design installed in SPS (LSS5)
- Diamond as PM replacement (parallel)
- Fibres to replace long cables

• Actions:

• 2015:

- Provide electronics for movement and acquisition of profiles (BL) http://indico.cern.ch/event/405743
- Assess performance with beam of scanner and diamond

• 2016:

- Beam tests SPS with final electronics/software
- Final detector and electronics design

• 2017->2018:

Production and test

• LS2:

 Installation and commissioning (final locations to be specified)

Upgrade SPS Fast (Ring) BCT

• Request:

- Provide BxB intensity = f(cycle-time)
- Accuracy (p/b) = 5%

• Problems:

 Position and bunch length dependence and limited analogue bandwidth (bunch cross-talk)

Proposed solutions:

- Detectors:
 - Install BCTI(CT) or BCTW (being tested on LHC)
 - To be installed in LSS5 (LSS3 taken by RF upgrade)
- Electronics/software:
 - Commission Digital Integration (DI) system
 - Adapt existing software for new electronics

Actions:

- Decide on best suited detector and order suitable detector for SPS
 - PI/QP
- Decide whether deconvolution is required and how
- Plan for installation (LSS3/LSS5) during YETS (2016) or EYETS (2017)
 - PI/ML
- LS2 (new internal beam dump)
 - Move complete girder (DCCT*2 + Fast) downstream of QD.519 (by LS2 at the latest)

SPS BSRT, matching and BLDM

BSRT:

- Request
 - Acquire beam size at SPS top energy as possible Beam Quality Monitor before extraction to LHC
- Solution
 - Update with optical line during LS1
 - Some performance tests done (G. Trad) stability to be assessed
- Issues:
 - Only enough stable light at flat-top (>400 GeV)
 - Radiation levels preventing use of digital cameras
 - Limited number of profiles acquired (BTVI card)
- Longer term (2016)
 - Redesign electronics and software with new VFC electronics for profiles and HIE-module for motors
 - Parallel system based on slit and gated PM being investigated (BI/PM)
 - Operational integration

Matching:

- Request
 - Acquire turn-by-turn beam size for SPS injection matching
- Issues
 - Bad signal/noise with low intensity beams
- Longer-term
 - Low priority for LIU standby

BLDM (satellite monitoring) - 'nice to have':

- Possible solution:
 - Use of PM on synchrotron light
- Request:
 - Intensity distribution
 - nsec resolution 200MHz
 - ~1E-4 from ultimate LIU bunches (~5E7 charges)

Diamond BLMs

Requests:

- Acquire fast (BxB) losses at SPS extraction
- New requests:
 - SPS injection
 - SPS scraper

Solution (2014/2015):

- Install commercial LeCroy scopes for diamonds in LSS4/LSS6
- Software interface (FESA) implemented

Longer-term:

 Investigate the use of VFC/DI as for Fast BCT for sampling and BxB histograms

• Issues:

Problems with Windows installation

• Actions:

- Clarify specifications for operational use (detector location and acquisition data) OP-SPS
- Purchase DI mezzanine for Fast BLM developments (PI) - done
- Test system in lab
- Prototype installation for SPS
 - Decide on electronics for PSB/PS later
- Propose BI/TB later this year
 - Oliver Stein to present results with diamonds in LHC

Gated tune measurement (QP)

• Request:

 Allow tune measurements on selected bunches/batches rather than default envelope

• Solution:

- Install dedicated LHC-type electronics in BA2
- Implement software interface BQSB

• Actions:

- Make necessary changes to BI front-end software (BQSB)
- OP-SPS operational application modification allowing gate selection
- Hope to test during Q4/2015

Upgrade of SPS BLM system

Request

- Turn by turn acquisition of losses in SPS ring
- Equip TT10 with BLMs + consolidate SPS->LHC (not LIU)
- 'Sun-glasses' on scraper BLM (LSS1)

Solution:

- Base electronics on HL-LHC developments
- Signal transmission over fibres to surface (as MOPOS)

Issues:

 No man-power resources to renovate complete system available until after LS2

Actions:

- OP/LIU to provide list of critical BLM locations
- BI to investigate whether possible to equip subset during LS2
- Investigate compatibility with new VME CPU (lab setup)

Conclusions

- Beam Size (BGI/BSRT/Matching/BLDM):
 - Complex instruments (radiation concerns)
 - Often requires expert presence (maintenance)
 - New electronics for SPS BSRT (2016)
 - LSS5 relocation for kickers and dump TBD
- Orbit system:
 - Radiation testing tunnel electronics critical
 - VFC-HD decisions pending
- Fast BCTs
 - Choice of detector (ICT/BCTW) to be made before end of 2015 (LHC/SPS)
 - Digital integration electronics being tested
- Diamond BLMs
 - Possible new locations (injection/scraper)
 - New VFC electronics (possibly for PSB also)
- Ionisation BLMs
 - No full renovation before after LS2
 - Subset equipped before?