
Optimizing CMS Data Formats for 
Analysis 

Peerut Boonchokchuay 
August 11th, 2015 

1 



Outline 

• Introduction to MiniAOD 

• Objectives for Project 

• Method Developed 

• Example Results 

• Conclusion and Next Steps 

2 



CMS MiniAOD Data Format 

• First introduced in 2014, MiniAOD is new CMS 
data format for analysis in LHC Run2 
– Data stored in MiniAOD file comprises of high-level 

object, i.e., tracks, jets, electrons 

– MiniAOD is a subset of AOD which is, in turn, a subset 
of RECO – output of Tier-0 event reconstruction 
• MiniAOD is 10x smaller than AOD 

– One advantage is that the miniAOD can be recreated 
quickly to improve the original physics object 
definitions using the latest algorithms 

3 Left:  https://cms-docdb.cern.ch/cgi-bin/PublicDocDB/RetrieveFile?docid=5936&filename=CMSbookS.pdf 
Right: https://public.web.cern.ch/public/features-archive/1204-1206.html 

RAW RECO 

RECO 

AOD 

Mini
AOD 



Objectives 

• As with any analysis formats, users can benefit 
from faster processing times and smaller data 
sizes (to fit more data on your laptop!) 
 

• To investigate ways to improve the MiniAOD 
performance in terms of: 
1. Time to read events from file  
2. Size of output file 

while withstanding: 
1. Job memory usage (RSS of CMSSW application) 
2. Time to write events to file 

4 



CMS MiniAOD data flow 

Analysis 
Input 

Source 

MiniAOD 
.root 

AOD 
.root 

Input 
Source 

Output 
Source 

MiniAOD  
object 

creation 

MiniAOD 
.root 

Step 1: Create MiniAOD 

Step 2: Analyze MiniAOD 

5 

MiniAOD 

modules 
and 

parameters 
are based on 

ROOT 



Method 

Study MiniAOD 
Creation 
Process 

• Execution time 

• Write time 

• Compression 
time 

• Output file size 

• Memory usage 

Study MiniAOD 
Reading Process 

• Execution time 

• Read time 

• Decompression 
time 

Adjust 
Parameter 
Settings 

• Number of events 

• Basket Size 

• Compression 
Algorithm 

• Compression Level 

• ….. 

Measure 
Performance 

• Tools 

• igProf 

• RSS monitoring 

• In terms of: 

• CPU time 

• memory usage 

6 



7 

Example of igProf Results 



8 

Example of igProf Results 



• By adjusting basket size from the default 16384 byte to 
262144 byte, we can improve MiniAOD file size by 8% and 
read back time by 9% 

0.00

10.00

20.00

30.00

40.00

50.00

60.00

2048 16384 131072 1048576

Fi
le

 S
iz

e
 (

M
B

) 

Basket Size (byte) 

Output File Size vs Basket Size 

9 

 Default value 

 Recommended value 

0

5

10

15

20

2048 16384 131072 1048576

R
e

ad
 T

im
e

 (
ti

ck
s)

 

Basket Size (byte) 

Read MiniAod Time vs Basket Size 

Example Results:  
MiniAOD Reading Process 



Example Results:  
MiniAOD Creation Process 

10 

0.00

0.50

1.00

1.50

2.00

2048 16384 131072 1048576

Jo
b

 M
e

m
o

ry
 (

G
B

) 

Basket Size (byte) 

Job Memory vs Basket Size 

 Default value 

 Recommended value 

• Increasing the basket size to 262144 bytes also does not 
significantly increase the total RSS of the application used 
to create the  CMS miniAOD 

0.00

10.00

20.00

30.00

40.00

50.00

60.00

2048 16384 131072 1048576

Fi
le

 S
iz

e
 (

M
B

) 

Basket Size (byte) 

Output File Size vs Basket Size 



11 

0

40

80

120

160

200

2 3 4 5 6 7

W
ri

te
 T

im
e

 (
ti

ck
s)

 

Compression Level 

Write Time vs Compression Level 

Example Results:  
Performance vs File Compression Algorithm 

0

10

20

30

40

50

60

70

2 3 4 5 6 7

Fi
le

 S
iz

e
 (

M
B

) 

Compression Level 

Output File Size vs Compression Level 

ZLIB

LZMA

• Of two algorithms, LZMA and ZLIB, the first is more complex, hence taking 
longer processing time, but yields smaller output size. 

• Write time for LZMA rises drastically as compression level increases whereas 
ZLIB consumes almost the same amount of time 

• Compression level has trivial effect on read time for both algorithms, 
however, LZMA read time could take up for 40% longer than that of ZLIB 



Conclusion 

• We investigated ways to improve CMS MiniAOD 
performance.  

• We found that optimizing some parameter settings 
could result in significant performance gain. 

• Basket size tuning could improve read back time as well 
as output file size of MiniAOD while having a relatively 
small increase in job memory 

• Other parameters we investigated, including the 
compression algorithm used were already set close to 
their optimal point 

• Next step: Investigate ways to improve performance by 
changing the miniAOD object definitions 

12 



Thank You 

 

13 


