
Optimizing CMS Data Formats for 
Analysis 

Peerut Boonchokchuay 
August 11th, 2015 

1 



Outline 

• Introduction to MiniAOD 

• Objectives for Project 

• Method Developed 

• Example Results 

• Conclusion and Next Steps 

2 



CMS MiniAOD Data Format 

• First introduced in 2014, MiniAOD is new CMS 
data format for analysis in LHC Run2 
– Data stored in MiniAOD file comprises of high-level 

object, i.e., tracks, jets, electrons 

– MiniAOD is a subset of AOD which is, in turn, a subset 
of RECO – output of Tier-0 event reconstruction 
• MiniAOD is 10x smaller than AOD 

– One advantage is that the miniAOD can be recreated 
quickly to improve the original physics object 
definitions using the latest algorithms 

3 Left:  https://cms-docdb.cern.ch/cgi-bin/PublicDocDB/RetrieveFile?docid=5936&filename=CMSbookS.pdf 
Right: https://public.web.cern.ch/public/features-archive/1204-1206.html 
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Objectives 

• As with any analysis formats, users can benefit 
from faster processing times and smaller data 
sizes (to fit more data on your laptop!) 
 

• To investigate ways to improve the MiniAOD 
performance in terms of: 
1. Time to read events from file  
2. Size of output file 

while withstanding: 
1. Job memory usage (RSS of CMSSW application) 
2. Time to write events to file 
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CMS MiniAOD data flow 
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Step 1: Create MiniAOD 

Step 2: Analyze MiniAOD 
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Method 

Study MiniAOD 
Creation 
Process 

• Execution time 

• Write time 

• Compression 
time 

• Output file size 

• Memory usage 

Study MiniAOD 
Reading Process 

• Execution time 

• Read time 

• Decompression 
time 

Adjust 
Parameter 
Settings 

• Number of events 

• Basket Size 

• Compression 
Algorithm 

• Compression Level 

• ….. 

Measure 
Performance 

• Tools 

• igProf 

• RSS monitoring 

• In terms of: 

• CPU time 

• memory usage 
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Example of igProf Results 
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Example of igProf Results 



• By adjusting basket size from the default 16384 byte to 
262144 byte, we can improve MiniAOD file size by 8% and 
read back time by 9% 
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Output File Size vs Basket Size 
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Example Results:  
MiniAOD Reading Process 



Example Results:  
MiniAOD Creation Process 

10 

0.00

0.50

1.00

1.50

2.00

2048 16384 131072 1048576

Jo
b

 M
e

m
o

ry
 (

G
B

) 

Basket Size (byte) 

Job Memory vs Basket Size 

 Default value 

 Recommended value 

• Increasing the basket size to 262144 bytes also does not 
significantly increase the total RSS of the application used 
to create the  CMS miniAOD 
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Example Results:  
Performance vs File Compression Algorithm 
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ZLIB

LZMA

• Of two algorithms, LZMA and ZLIB, the first is more complex, hence taking 
longer processing time, but yields smaller output size. 

• Write time for LZMA rises drastically as compression level increases whereas 
ZLIB consumes almost the same amount of time 

• Compression level has trivial effect on read time for both algorithms, 
however, LZMA read time could take up for 40% longer than that of ZLIB 



Conclusion 

• We investigated ways to improve CMS MiniAOD 
performance.  

• We found that optimizing some parameter settings 
could result in significant performance gain. 

• Basket size tuning could improve read back time as well 
as output file size of MiniAOD while having a relatively 
small increase in job memory 

• Other parameters we investigated, including the 
compression algorithm used were already set close to 
their optimal point 

• Next step: Investigate ways to improve performance by 
changing the miniAOD object definitions 

12 



Thank You 
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