Search for the standard model Higgs boson produced through vector boson fusion and decaying to bottom quarks with CMS

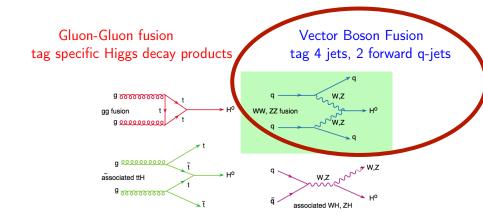
Paolo Azzurri, Nadezda Chernyavskaya 1,2,3

¹Institut for Theoretical and Experimental Physics Moscow. Russia

²Moscow Institute of Physics and Technology Moscow, Russia

³National Research Nuclear University MEPhI Moscow, Russia

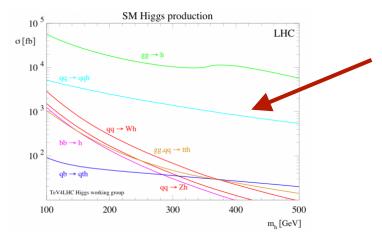
Outline


- Motivation
- Higgs boson production and decay modes at LHC
- Vector Boson Fusion process
- Analysis of VBF H $\longrightarrow b\bar{b}$
- Future work

Motivation

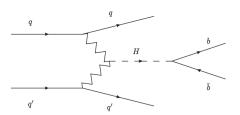
- ullet Higgs o bar b : measure coupling to fermions and down-type quarks [not yet established!]
- Inclusive search is impossible.
- VBF is crucial to check the unitarity of SM.
- CMS Run I the only fully hadronic SM search for Higgs ⇒ need to increase the sensitivity in Run II.

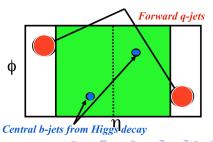
Higgs production at LHC



Heavy-quark associated tag top-quark decays

Vector Boson associated tag vector boson decay products


Higgs boson production cross-section


VBF has the second largest production cross-section following GF.

VBF H $\longrightarrow b\bar{b}'$

- 4 jets high p_T jets
 - 2 froward q-jets from colliding protons with large $\Delta\eta$
 - 2 central b-jets from Higgs boson decay
- Rapidity gap in the central region due to NO exchange of color singlet at LO
- Main background:
 - QCD
 - hadronic decays of Z,W
 - hadronic decays of top-quark

MC samples for Run II, trigger, offline preselection

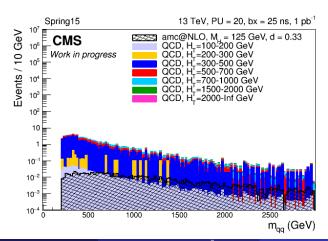
MC samples : 13 TeV, 20 PU, 25 ns Bunch crossing VBF signal is AMC at NLO + Pythia8, $m_H=125$ GeV, x-sec 2.16 pb $^{-1}$, BR = 0.58

Huge BG ightarrow dedicated trigger is required! 4 jets, 2 of which are b-tagged and a cut on M_{qq} .

My offline preselection:

- Jets : $p_T(1^{st}) > 92$ GeV; $p_T(2^{nd}) > 76$ GeV; $p_T(3^{rd}) > 64$ GeV; $p_T(4^{th}) > 30$ GeV
- 2 Bjets : btag > 0.4
- \bullet $M_{qq} > 200$ GeV, qq-jets are the p_T -leading pair, excluding the bb-jets
- \bullet $\Delta\eta_{qq} > 1.2$ (qq-jets separated in pseudorapidity)
- $\Delta \phi_{bb}$ < 2.4 (remove back-to-back b-jets)

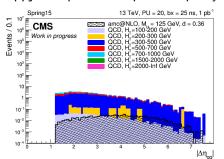
Preselection + trigger efficiency

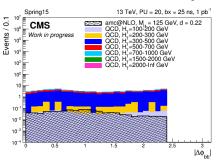

Sample	yield(per fb^{-1})	efficiency
VBF , $M_H = 125 \text{ GeV}$	95.3	0.03
QCD, H _T =100-200 GeV	628.9	2.3e-08
QCD, H _T =200-300 GeV	2411.8	3.6e-04
QCD, H _T =300-500 GeV	51915.6	1.4e-04
QCD, $H_T = 500-700 \text{ GeV}$	17049.3	5.7e-04
QCD, <i>H</i> _T =700-1000 GeV	9752.0	0.38
QCD, $H_T = 1500-2000 \text{ GeV}$	240.6	1.3e-07
QCD, H_T =2000-Inf GeV	6.28	5.1e-05
Total BG	82100.1	

For $1fb^{-1}$ we have already 100 signal events after the preselection and trigger!

Mass of two quark jets

Harder for the signal!


Separation power : $d=\frac{1}{2}\Sigma|s-b|$ d \to 1 - good separation; 0 - bad separation.


Two jets : η , ϕ

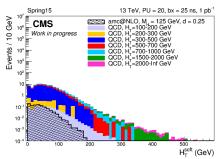
$$d = \frac{1}{2}\Sigma|s - b|$$

 $\Delta \eta_{qq} > 1.2$ qq-jets separated in pseudorapidity



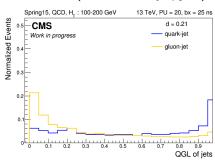
 $\Delta\phi_{bb} < 2.4$ remove back-to-back b-jets

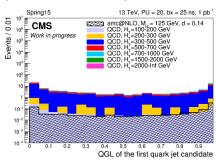
Mass of two b-jets


$$d = \frac{1}{2}\Sigma|s - b|$$

Soft Jets : H_T

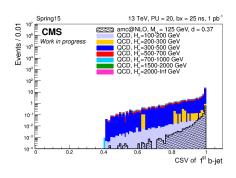
$$d = \frac{1}{2}\Sigma|s - b|$$

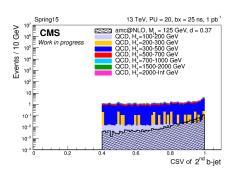

Additional hadronic soft QCD activity outside the jets. $H_T = \Sigma |p_T|$



QGL of two quark jets

$$d = \frac{1}{2}\Sigma|s - b|$$


Quark Gluon likelihood - discriminator between quarks and gluons. Signal events (dominated by q-jets) \Longrightarrow peak at 1, BG \Longrightarrow peaks at 0.



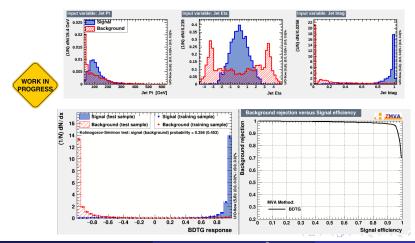
Btag of two b jets

$$d = \frac{1}{2}\Sigma|s - b|$$

New proposal! $\Delta \eta_{qb}$

$$d=\tfrac{1}{2}\Sigma|s-b|$$

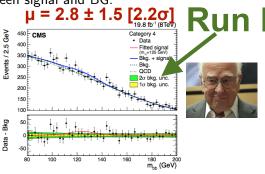
Signature : 2 q-jets, 2 b-jets. Look at the $\Delta\eta_{qb}$ for most forward and most backward q- and b-jets :


forward Spring 15 13 TeV, PU = 20, bx = 25 ns, 1 pb⁻¹ Events / 0.1 amc@NLO, M. = 125 GeV, d = 0.26 CMS QCD, H_=100-200 GeV ork in progress QCD, HL=200-300 GeV QCD, HL=1500-2000 GeV 10 QCD, HL=2000-Inf GeV 10 10-2 10-3 $\Delta \eta_{ob}^{forward}$

Good separation power!

b-likelihood, q-likelihood

Right tagging of 2 b-jets and 2 q-jets are crucial for the analysis! To improve it \Longrightarrow use TMVA. Train the BDT to find b-tagged and q-tagged jets on MC and then use it on data.



Shape comparison. Final TMVA.

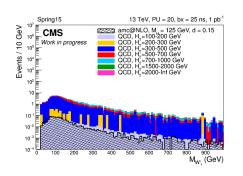
$$d = \frac{1}{2}\Sigma|s - b|$$

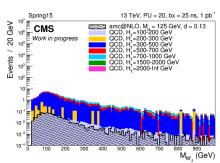
We can use the following variables to train the TMVA to distinguish between signal and BG.

Variable	d
M _{bb}	0.67
btag2	0.37
btag	0.37
η_{qq}	0.36
M_{qq}	0.33
$\eta_{qb}^{forward}$	0.26
H _T soft	0.25
Soft Multiplicity	0.25
$\eta_{qb}^{backward}$	0.24
Фьь	0.22

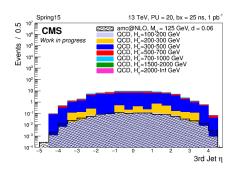
And then evaluate all the possible uncertainties...

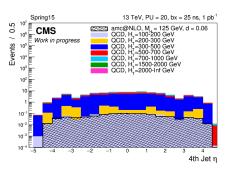
Conclusion

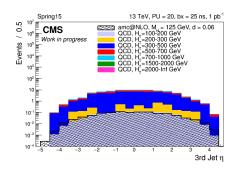

- The Run II VBF Hbb analysis has started
- With $1fb^{-1}$ we expect to have \sim 80-100 signal events
- New discriminating variable $\Delta \eta_{qb}$ with good separation power was proposed
- The work is still in progress
- And we patiently wait for the new data from LHC!

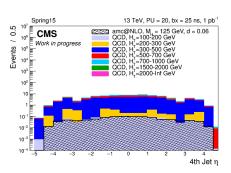


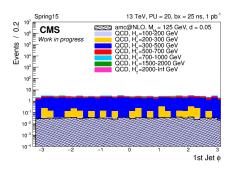
Thank you for your attention!

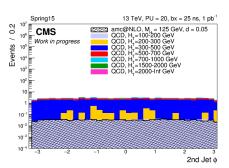

BACK UP

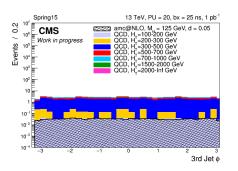

Mass of the virtual bosons W_1 and W_2

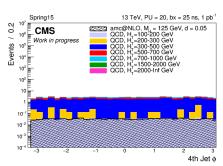


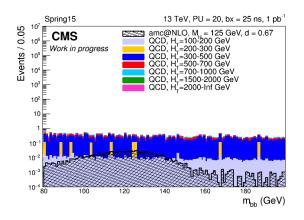

η distribution of jets. Third and Forth.



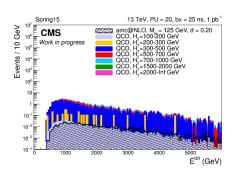

η distribution of jets. Third and Forth.

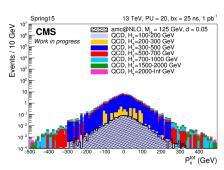



ϕ distribution of jets. First and Second.

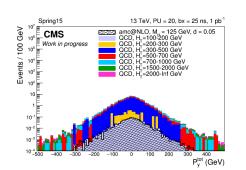


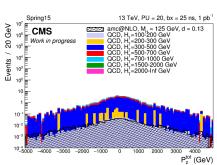
ϕ distribution of jets. Third and Forth.



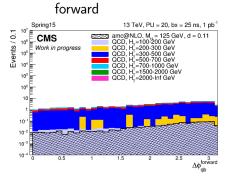


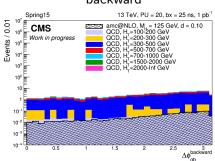
Mass of two b-jets




$\overline{E^{tot}}$, p_x^{tot} , p_y^{tot} , p_z^{tot}

$\overline{E^{tot}}$, p_x^{tot} , p_v^{tot} , p_z^{tot}




Everything is consistent with expectations.

New proposal! $\Delta \eta_{ab}$

Signature : 2 q-jets, 2 b-jets. Look at the $\Delta \phi_{ab}$ for most forward and most backward q- and b-jets:

backward

Discriminating variables. Shape comparison

$$d = 1/2\Sigma |s - b|$$

Variable	d
hMbb	0.67
hbtag2	0.37
hbtag	0.37
hEtaQQ	0.36
hMqq	0.33
hEtaQB1	0.26
hHTsoft	0.25
hSoft_n5	0.25
hEtaQB2	0.24
hSoft_n2	0.23
hPhiBB	0.22
hSoft_n10	0.21
hPtSoftJets2	0.21
hPtSoftJets	0.2
hEtot	0.2
hVB1_mass	0.15

Variable	d
hEtaqqbb	0.14
hqgl	0.14
hqgl2	0.13
hVB2_mass	0.13
hPztot	0.13
hx2	0.12
hcosOqqbb	0.12
hJet5_pt	0.12
hJet1_eta	0.11
hPtSoftJets3	0.11
hPhiQB1	0.11
hJet2_pt	0.1