

G4beamline Simulations for the H8 Beamline at the North Area

Freja Thoresen, EN-MEF-LE Univ. of Copenhagen & CERN Advisors: N. Charitonidis [CERN]

Outline of Presentation

Introduction

- ► The EHNI area of SPS
- H8 beamline
 - Simulation of H8 with G4BL
- Results

The EHN1 area of SPS

- Controlled secondary beam area for experiments
 - ▶ 4 beam lines ("H2", "H4", "H6", "H8")
- Beam (400 GeV/c) extracted on a Be-Target and produces the secondary beam
- Beam is extracted approx. every 54 s

Target Station

Beamlines from T4

Motivation

But in a real beam line...

- Misalignments, power supplies not perfect, ...
- Particle losses and creation of secondaries
- "Changes" in the beam purity, not Gaussian shapes, ...
- Better understanding of the beam line behavior is necessary!
 - Many elements (~ 600 m beam line length)
 - Many different particle types interacting with the elements
 - Understand the conventions ("left", "right")

My task:

a) Detailed modelling of the line including magnets, beam instrumentation and detectors in a specialized program based on GEANT4, G4BeamLine!

b) Comparison of simulations and measurements

H8 Beam Line

Other Elements

- Detectors
 - Scintillators/Triggers
 - FISC (Fllament SCanners)

Quadrupole

Simulation of H8

Beam goes right, up, down and right

B1, B2 Modelling of the Vertical Bends

- Parameters for modelling a bend in G4BL
 - Magnetic field (defines beam rotation)
 - Geometry rotation (independent!)
 - Shift of bend (for correct positioning!)

From Lorentz force law,

$$\mathbf{F} = m\frac{d\boldsymbol{v}}{dt} = e[\boldsymbol{E} + (\boldsymbol{v} \times \boldsymbol{B})]$$

A equation can be derived for a magnetic bend,

$$\theta[mrad] = \frac{299.79 \cdot B[T] \cdot L[m]}{p[GeV/c]}$$

Results (analysis still ongoing)

Comparison of Measured and Simulated Scintillator Counts

XDWC3_4 (403)

FISC10 (419)

¹²⁻Aug-15

Conclusion

- Simulation of H8 beamline in G4BeamLine
 - Detailed simulation (detectors, magnets...)
 - Up to now very good agreement between measurements and simulations!
- Future steps
 - Simulate the correct beam composition (mixed beam of protons and pions)
 - Simulating the target
 - Obtain more statistics and understand the causes of some differences with the measurements

Questions?