G4beamline Simulations for the H8 Beamline at the North Area

Freja Thoresen, EN-MEF-LE
Univ. of Copenhagen \& CERN
Advisors: N. Charitonidis [CERN]

Outline of Presentation

- Introduction
- The EHNI area of SPS
, H8 beamline
- Simulation of H 8 with G4BL

Results

The EHN1 area of SPS

- Controlled secondary beam area for experiments
- 4 beam lines ("H2", "H4", "H6","H8")
- Beam ($400 \mathrm{GeV} / \mathrm{c}$) extracted on a BeTarget and produces the secondary beam
- Beam is extracted approx. every 54 s

Target Station

Beamlines from T4

- Primary proton beam in P0
- H8, H6 secondary beams

Motivation

- But in a real beam line...
- Misalignments, power supplies not perfect, ...
- Particle losses and creation of secondaries
" "Changes" in the beam purity, not Gaussian shapes, ...
- Better understanding of the beam line behavior is necessary!
- Many elements (~ 600 m beam line length)
- Many different particle types interacting with the elements
- Understand the conventions ("left", "right")

My task:

a) Detailed modelling of the line including magnets, beam instrumentation and detectors in a specialized program based on GEANT4, G4BeamLine!
b) Comparison of simulations and measurements

Other Elements

- Detectors
- Scintillators/Triggers
p FISC (Fllament SCanners)

Wire Chamber

Quadrupole

$$
\frac{1}{f_{\text {total }}}=\frac{1}{f_{1}}+\frac{1}{f_{2}}-\frac{d}{f_{1} f_{2}}
$$

Collimator

Simulation of H8

Beam goes right, up, down and right

B1, B2 Modelling of the Vertical Bends

- Parameters for modelling a bend in G4BL
- Magnetic field (defines beam rotation)
- Geometry rotation (independent!)
- Shift of bend (for correct positioning!)

From Lorentz force law,

$$
\mathbf{F}=m \frac{d \boldsymbol{v}}{d t}=e\left[\boldsymbol{E}^{\prime}+(\boldsymbol{v} \times \boldsymbol{B})\right]
$$

A equation can be derived for a magnetic bend,

$$
\theta[\mathrm{mrad}]=\frac{299.79 \cdot B[T] \cdot L[m]}{p[\mathrm{GeV} / \mathrm{c}]}
$$

Results (analysis still ongoing)

XDWC3_4 (403)

XDWC3_4(403) x-position

Counts:5.085E04 Mean: $14.42+\rho$
XDWC. 042.544 - XDWC04 H8B are..

Counts:5.250E04 Mean: $0.03+1$ \&

FISC10 (419)

Conclusion

- Simulation of H 8 beamline in G4BeamLine
- Detailed simulation (detectors, magnets...)
- Up to now very good agreement between measurements and simulations!
- Future steps
- Simulate the correct beam composition (mixed beam of protons and pions)
- Simulating the target
- Obtain more statistics and understand the causes of some differences with the measurements

Questions?

