MLHEP 2015 summer school

Europe/Moscow
Academic University

Academic University

Khlopin st, 8, Saint Petersburg, Russia
Description

Summer school on Machine Learning in High Energy Physics http://www.hse.ru/mlhep2015/

    • 08:00 08:15
      Registration
    • 08:15 09:00
      breakfast 45m
    • 09:00 09:35
      Welcome 204

      204

      Academic University

      Convener: Andrey Ustyuzhanin (Yandex School of Data Analysis (RU))
    • 09:35 09:40
      break 5m
    • 09:40 12:40
      Advanced track: lectures 206

      206

      Academic University

      Convener: Dr Victor Kitov (MSU)
    • 09:40 12:40
      Introductory track: lectures 204

      204

      Academic University

      Convener: Alexey Rogozhnikov
      • 09:40
        Intro: General pipeline, ML at a glance 1h 20m
      • 11:00
        coffee break 20m
      • 11:20
        Intro: kNN, basic overfitting, roc curve, logistic regression 1h 20m
    • 12:40 13:45
      lunch 1h 5m
    • 13:45 17:10
      Advanced track: seminars 206

      206

      Academic University

      Khlopin st, 8, Saint Petersburg, Russia
      Convener: Tatiana Likhomanenko (National Research Centre Kurchatov Institute (RU))
      • 13:45
        MLHEP introduction. ML vs MLHEP: correlation and agreement restrictions 1h 30m
        Speaker: Tatiana Likhomanenko (National Research Centre Kurchatov Institute (RU))
      • 15:15
        coffee break 25m
      • 15:40
        sPlot technique. ML on sPlot data. 1h 30m
    • 13:45 17:10
      Introductory track: seminars 204

      204

      Academic University

      Khlopin st, 8, Saint Petersburg, Russia
      Convener: Nikita Kazeev (Yandex School of Data Analysis (RU))
    • 17:10 17:20
      break 10m
    • 17:20 19:00
      Applying Machine Learning to LHC triggers optimization 1h 40m 204

      204

      Academic University

      Khlopin st, 8, Saint Petersburg, Russia
      Speaker: Mika Anton Vesterinen (Ruprecht-Karls-Universitaet Heidelberg (DE))
    • 19:00 20:30
      Welcome dinner 1h 30m
    • 08:15 09:30
      breakfast 1h 15m
    • 09:30 12:30
      Advanced track: lectures #2 206

      206

      Academic University

      Khlopin st, 8, Saint Petersburg, Russia
      Convener: Dr Victor Kitov (MSU)
      • 09:30
        model ensembling #1 1h 20m
      • 10:50
        coffee break 20m
      • 11:10
        model ensembling #2 1h 20m
    • 09:30 12:30
      Introductory track: lectures #2 204

      204

      Academic University

      Khlopin st, 8, Saint Petersburg, Russia
      Convener: Alexey Rogozhnikov
      • 09:30
        neural networks 1h 20m
      • 10:50
        coffee break 20m
      • 11:10
        decision tree, regression tree 1h 20m
    • 12:30 13:45
      lunch 1h 15m
    • 13:45 17:10
      Advanced track: seminars #2 206

      206

      Academic University

      Khlopin st, 8, Saint Petersburg, Russia
      Convener: Tatiana Likhomanenko (National Research Centre Kurchatov Institute (RU))
      • 13:45
        Brave new boosting world: flatness boosting 1h 30m
      • 15:15
        coffee break 25m
      • 15:40
        Brave new boosting world: reweighing boosting. Iterative learning 1h 30m
    • 13:45 17:10
      Introductory track: seminars #2 204

      204

      Academic University

      Khlopin st, 8, Saint Petersburg, Russia
      Convener: Nikita Kazeev (Yandex School of Data Analysis (RU))
    • 17:10 17:30
      break 20m
    • 17:30 19:10
      Challenges of searching for physics signatures with a large amount of background 1h 40m 204

      204

      Academic University

      Khlopin st, 8, Saint Petersburg, Russia
      Speaker: Patrick Haworth Owen (Imperial College Sci., Tech. & Med. (GB))
    • 08:15 09:30
      breakfast 1h 15m
    • 09:30 12:30
      Advanced track: lectures #3 206

      206

      Academic University

      Khlopin st, 8, Saint Petersburg, Russia
      Convener: Dr Victor Kitov (MSU)
      • 09:30
        Linear dimensionality reduction. 1h 20m
      • 10:50
        coffee break 20m
      • 11:10
        Non-linear dimensionality reduction. Kernel trick. Common kernels. 1h 20m
    • 09:30 12:30
      Introductory track: lectures #3 204

      204

      Academic University

      Khlopin st, 8, Saint Petersburg, Russia
      Convener: Alexey Rogozhnikov
      • 09:30
        Ensembles 1h 20m
      • 10:50
        coffee break 20m
      • 11:10
        Gradient boosting; boosting to uniformity. 1h 20m
    • 12:30 13:45
      lunch 1h 15m
    • 13:45 17:10
      Advanced track: seminars #3 206

      206

      Academic University

      Khlopin st, 8, Saint Petersburg, Russia
      Convener: Tatiana Likhomanenko (National Research Centre Kurchatov Institute (RU))
    • 13:45 17:10
      Introductory track: seminars #3 204

      204

      Academic University

      Khlopin st, 8, Saint Petersburg, Russia
      Convener: Nikita Kazeev (Yandex School of Data Analysis (RU))
    • 17:10 17:30
      break 20m
    • 17:30 19:10
      MVA vs cut-and-count techniques in the SM model processes searches and measurements 1h 40m 204

      204

      Academic University

      Khlopin st, 8, Saint Petersburg, Russia
      Speaker: Lesya Shchutska (University of Florida (US))
    • 08:15 09:00
      breakfast 45m
    • 09:00 12:00
      Advanced track: lectures #4 206

      206

      Academic University

      Khlopin st, 8, Saint Petersburg, Russia
      Convener: Dr Victor Kitov (MSU)
    • 09:00 12:00
      Introductory track: lectures #4 204

      204

      Academic University

      Convener: Alexey Rogozhnikov
      • 09:00
        GBDT tuning, reweighting, testing hypotheses, gaussian processes for optimization 1h 20m
      • 10:20
        coffee break 20m
      • 10:40
        Unsupervised learning, Latent Dirichlet Allocation, PCA. Fast predictions and pruning 1h 20m
    • 12:00 13:00
      lunch 1h
    • 13:00 16:15
      Advanced track: seminars #4 206

      206

      Academic University

      Khlopin st, 8, Saint Petersburg, Russia
      Convener: Tatiana Likhomanenko (National Research Centre Kurchatov Institute (RU))
      • 13:00
        Summary: HEP ML analysis sketch, from data to discovery. 1h 30m
      • 14:30
        coffee break 15m
      • 14:45
        My own first NN using theano. 1h 30m
    • 13:00 16:15
      Introductory track: seminars #4 204

      204

      Academic University

      Khlopin st, 8, Saint Petersburg, Russia
      Convener: Nikita Kazeev (Yandex School of Data Analysis (RU))
    • 16:15 16:20
      break 5m
    • 16:20 18:00
      Multivariate techniques in the Higgs search 1h 40m 204

      204

      Academic University

      Khlopin st, 8, Saint Petersburg, Russia
      Speaker: Josh Bendavid (CERN)
    • 18:00 19:00
      transfer to the boat 1h
    • 19:00 22:00
      channel cruise + closing dinner + awards 3h
    • 22:00 23:00
      transfer to the hotel 1h