CERN Oct 5th 2015

Matthew McCullough
With Mike Hance and Filip Moortgat

This Talk:

What I will try to cover:

- Section titles and scope
- Analyses from pheno/exp

•

Please comment on:

- Analyses we may not be aware of
- Overlap with other sections
- Appropriateness of contents
- •

Snapshot of analyses:

arXiv.org > hep-ph > arXiv:1502.05044

High Energy Physics - Phenomenology

Neutralinos in Vector Boson Fusion at High Energy Colliders

arXiv.org > hep-ph > arXiv:1312.1802

Asher Berlin, Tongyan Lin, Matthew Low, Lian-Tao Wang

High Energy Physics - Phenomenology

Gaugino physics of split supersymmetry spectrum at the LHC ancarxiv.org > hep-ph > arXiv:1406.4512 future proton colliders

Sunghoon Jung, James D. Wells

High Energy Physics - Phenomenology

Boosting Stop Searches with a 100 TeV Proton Collider

arXiv.org > hep-ph > arXiv:1311.6480 High Energy Physics - Phenomenology

othy Cohen, Raffaele Tito D'Agnolo, Mike Hance, Hou Keong Lou, Jay G. Wacker

SUSY Simplified Models at 14, 33, and 100 TeV Proton Colliders

Timothy Cohen, Tobias Golling, Mike Hance, Anna Henrichs, Kiel Howe, Joshua Loyal, Sanjay Padhi, Jay G. Wacker

arXiv.org > hep-ph > arXiv:1412.4789

High Energy Physics - Phenomenology

The Relic Neutralino Surface at a 100 TeV collider

arXiv.org > hep-ph > arXiv:1404.0682

Joseph Bramante, Patrick J. Fox, Adam Martin, Bryan Ostdiek, Tilman Plehn, Torben Schell, Michihisa Takeuchi

High Energy Physics - Phenomenology

High Energy Physics - Phenomenology

Neutralino Dark Matter at 14 and 100 TeV

Matthew Low, Lian-Tao Wang

LHC constraints on Mini-Split anomaly and gauge mediation and prospects for LHC 14 and a future 100 TeV pp collider

Hugues Beauchesne, Kevin Earl, Thomas Gregoire

arXiv.org > hep-ph > arXiv:1503.03099

(Submitted on 10 Mar 2015 (v1), last revised 27 Aug 2015 (this version, v3))

arXiv.org > hep-ph > arXiv:1410.6287 High Energy Physics - Phenomenology

arXiv.org > hep-ph > arXiv:1506.02644

Prospects for Electroweakino Discovery at a 100 Te High Energy Physics - Phenomenology

Stefania Gori, Sunghoon Jung, Lian-Tao Wang, James D. Wells

Reaching for Squarks and Gauginos at a 100 TeV p-p Collider

Sebastian A. R. Ellis, Bob Zheng

(Submitted on 23 Oct 2014)

Snapshot of analyses:

arXiv.org > hep-ph > arXiv:1410.1532

High Energy Physics - Phenomenology

Prospects for observing charginos and neutralinos at a 100 TeV

proton-proton collider

arXiv.org > hep-ph > arXiv:1408.1961

Bobby S. Acharya, Krzysztof Bozek, Chakrit Pongkitivanichkul, Kazuki Sakurai

High Energy Physics - Phenomenology

Superpartners at LHC and Future Colliders: Predictions from Constrained Compactified M-Theory

Sebastian A.R. Ellis, Gordon L. Kane, Bob Zheng

arXiv.org > hep-ph > arXiv:1407.5066

High Energy Physics - Phenomenology

Squark and gluino production cross sections in pp collisions at \sqrt{s} = 13, 14, 33 and 100 TeV

Christoph Borschensky, Michael Krämer, Anna Kulesza, Michelangelo Mangano, Sanjay Padhi, Tilman Plehn,

Xavier Portell

arXiv.org > hep-ph > arXiv:1402.5419

High Energy Physics - Phenomenology

Prospects for constrained supersymmetry at $\sqrt{s}=33$ TeV and $\sqrt{s}=100$ TeV proton-proton super-colliders

Andrew Fowlie, Martti Raidal

arXiv.org > hep-ph > arXiv:1309.1514

High Energy Physics - Phenomenology

Reach in All Hadronic Stop Decays: A Snowmass White Paper

Daniel Stolarski

arXiv.org > hep-ex > arXiv:1307.5327

High Energy Physics - Experiment

Sensitivity of future collider facilities to WIMP pair production via effective operators and light mediators

Ning Zhou, David Berge, Tim M.P. Tait, LianTao Wang, Daniel Whiteson

Snapshot of analyses:

arXiv.org > hep-ph > arXiv:1502.05044 High Energy Physics - Phenomenology Neutralinos in Vector Boson Fusion at High Energy Colliders There are many papers Asher Berlin, Tongyan Lin, Matthew Low, Lian-Tao Wang arXiv.org > hep-ph > arXiv:1312.1High Energy Physics - Phenomer Gaugino physics of s considering 100 TeV future proton collide Sunghoon Jung, James D. Wells 100 TeV Proton Collider arXiv.org > hep-ph > ar) Without mentioning ∟ou, Jay G. Wacker High Energy Physics -SUSY Simplifier explicitly in title/abstract. Timothy Cohen, Tobia Wacker Holler if you see something arXiv.org > hep High Energy P Neutralia hediation and der Matthew Low, Lian-Tao arXiv.org > hep-ph > arXiv:1410.6287 High Energy Physics - Phenomenology Prospects for Electroweakino Discovery at a 100 Te High Energy Stefania Gori, Sunghoon Jung, Lian-Tao Wang, James D. Wells Reaching for Squarks Collider (Submitted on 23 Oct 2014) Sebastian A. R. Ellis, Bob Zheng

- 2 Supersymmetry
- 2.1 Introduction
- 2.2 Stops
- 2.3 Gluinos
- 2.4 Neutralinos
- 2.5 Squarks
- 2.6 Exotic Signatures
- 2.7 Indirect Probes
- 2.8 Mini-Split SUSY

- The motivation for SUSY is naturalness of the weak scale.
- No clear UV-based structure has emerged (gravity/gauge/anomaly-mediated etc). We thought
 - A) Break structure up by the particles
 - B) Order sections initially by relevance to hierarchy problem
- We feel this "bottom up" structure may be most useful to reader, but also useful for spreading information: generic sparticle reach may be easily found in document.

- 2 Supersymmetry
- 2.1 Introduction
- 2.2 Stops
- 2.3 Gluinos
- 2.4 Neutralinos
- 2.5 Squarks
- 2.6 Exotic Signatures
- 2.7 Indirect Probes
- 2.8 Mini-Split SUSY

Introduction

- The motivation for SUSY is the hierarchy problem, so this must be the focus of introduction. Make argument clear, and gather opinion.
- "At present the indication is that Nature does not too much care about our notion of naturalness. Still the argument for naturalness is a solid one and we are facing a puzzling situation." Altarelli, 2013
- Other possibilities out there, but relative to them SUSY still very attractive.
- Synergies. E.g. between Higgs mass and SUSY predictions: If high-ish $tan(\beta)$ stops probably in 100 TeV reach!

- 2 Supersymmetry
- 2.1 Introduction
- 2.2 Stops
- 2.3 Gluinos
- 2.4 Neutralinos
- 2.5 Squarks
- 2.6 Exotic Signatures
- 2.7 Indirect Probes
- 2.8 Mini-Split SUSY

Stops

- Cornerstone of SUSY.
- Direct production searches

Production from gluino decays

- 2 Supersymmetry
- 2.1 Introduction
- 2.2 Stops
- 2.3 Gluinos
- 2.4 Neutralinos
- 2.5 Squarks
- 2.6 Exotic Signatures
- 2.7 Indirect Probes
- 2.8 Mini-Split SUSY

To keep in mind during document preparation:

Gluinos

Keystone of SUSY.

• Studies already showing significant reach. 1312.1802, 1506.02644.

- 2 Supersymmetry
- 2.1 Introduction
- 2.2 Stops
- 2.3 Gluinos
- 2.4 Neutralinos
- 2.5 Squarks
- 2.6 Exotic Signatures
- 2.7 Indirect Probes
- 2.8 Mini-Split SUSY

To keep in mind during document preparation:

Neutralinos (and Charginos)

- Capstone of SUSY.
- Must discuss dark matter possibility
 - Number of studies already: 1412.4789,
 1410.6287, 1502.05044, 1404.0682.
 - Reach into few- TeV range seems typical!
- Avoid overlap, i.e. not "Mono-X" searches
- Focus on SUSY-specific signatures, including chargino production.
- Could perhaps subsume gravitino/ goldstino pheno into here as well?

- 2 Supersymmetry
- 2.1 Introduction
- 2.2 Stops
- 2.3 Gluinos
- 2.4 Neutralinos
- 2.5 Squarks
- 2.6 Exotic Signatures
- 2.7 Indirect Probes
- 2.8 Mini-Split SUSY

To keep in mind during document preparation:

First two generation squarks

• "Vanilla" searches likely to have a significant reach.

Input from exp expected.

- 2 Supersymmetry
- 2.1 Introduction
- 2.2 Stops
- 2.3 Gluinos
- 2.4 Neutralinos
- 2.5 Squarks
- 2.6 Exotic Signatures
- 2.7 Indirect Probes
- 2.8 Mini-Split SUSY

To keep in mind during document preparation:

Other SUSY Partners/Exotic Signatures

- Slepton discussion in here, or separate?
- Consider "Stealth" and "Compressed" spectra. RPV decays. Vanishing tracks.
- Displaced vertices.
 - Personal comment: Low background (rare) signatures like D-Vs could be very promising for 100 TeV. Relative to 14 TeV production cross sections may grow significantly, while background possibly staying low. Potentially significant leap in reach for 100 TeV.
- These considerations may motivate detector performance goals.

- 2 Supersymmetry
- 2.1 Introduction
- 2.2 Stops
- 2.3 Gluinos
- 2.4 Neutralinos
- 2.5 Squarks
- 2.6 Exotic Signatures
- 2.7 Indirect Probes
- 2.8 Mini-Split SUSY

To keep in mind during document preparation:

Indirect probes

- Precision Higgs coupling measurements inform our picture of sparticle spectra (hGG, gyy,2HDM,di-Higgs).
- Flavour and CP-violation, precision observables also inform of structures above the weak scale.
- Other precision SM measurements also useful, e.g. precision top constraints stops.

- 2 Supersymmetry
- 2.1 Introduction
- 2.2 Stops
- 2.3 Gluinos
- 2.4 Neutralinos
- 2.5 Squarks
- 2.6 Exotic Signatures
- 2.7 Indirect Probes
- 2.8 Mini-Split SUSY

To keep in mind during document preparation:

Mini-Split SUSY

• Mini-Split scenarios embrace the tuning of weak scale.* However still

interesting due to:

Higgs Mass

Dark Matter

– Unification?

- Could 100 TeV offer comprehensive coverage, from gaugino production?
- Interplay with indirect dark matter searches?

2 Supersymmetry

2.1 Introduction

2.2 Stops

2.3 Gluinos

2.4 Neutralinos

2.5 Squarks

2.6 Exotic Signatures

2.7 Indirect Probes

2.8 Mini-Split SUSY

To keep in mind during document preparation:

Which search projections are out there already? Which are coming? Which have been overlooked?

*See however: 1509.00834

Conclusions

- Discover: Summarize the ground that could be covered with a 100 TeV collider.
- Investigate: If LHC saw emerging evidence during HL-LHC, could 100 TeV fully explore the new physics?
- Constrain: If no signs for SUSY emerged at 100 TeV, would we be convinced that a SUSY resolution of hierarchy problem was not realised in nature?

- 2 Supersymmetry
- 2.1 Introduction
- 2.2 Stops
- 2.3 Gluinos
- 2.4 Neutralinos
- 2.5 Squarks
- 2.6 Exotic Signatures
- 2.7 Indirect Probes
- 2.8 Mini-Split SUSY