SIGNATURES BEYOND BENCHMARK MODELS

FCC-hh BSM group informal meeting

Prealps

Ain Department

Riccardo Torre

EPFL Lausanne

Tobias Golling

Geneva University

80-100 km long circular tunnel

CERN - 05 October 2015

GOALS OF THE SUBGROUP

- Study motivated and generic signatures that allow to test new physics
 Motivated and generic = shared by large classes of new physics
 scenarios
- Define collider and detector benchmarks that allow for the highest possible sensitivity to these signatures and that can help in a concrete assessment of the needed design of the future facilities

SINGATURES

- Consider signatures that are not "typical" of SUSY and DM to ensure orthogonality with SUSY and DM subgroups (that's why the title "beyond benchmark models")
- Of course all of the signatures considered in this subgroup can be present in SUSY and DM models, but they are not the "smoking gun" nor the key ingredients of them
- Consider signatures that allow for both direct and indirect sensitivity on new physics
- Examples of classes of signatures are
 - Pairs of SM particles with large invariant (or transverse) mass
 - One or more boosted SM massive particles
 - SM particles at large pseudo rapidity (forward region)
 - etc.

DIRECT AND INDIRECT

- The key distinction between direct and indirect new physics searches is the possibility of directly producing and observing new particles
- Two necessary conditions for direct searches
 - 1. The new particles are kinematically accessible
 - 2. They are narrow enough to be reconstructed
- These properties can be parametrized in a rather general form by the typical coupling strength of the new particle g_X and by its mass M_X

$$g_X \lesssim 1$$
 M_X below threshold direct searches $g_X \lesssim 1$ M_X above threshold indirect searches $1 \ll g_X \lesssim 4\pi$ any M_X

OUTLINE OF THE SECTION

Resonances: single production

Di-leptons, lepton-neutrino, di-jets, di-tau, bb, tt, tb resonances, di-bosons (including Higgs), etc.

Resonances: associated production and VBF

Resonances in association with forward SM particles, one forward jet, b or t (relevant for partners of the SM fermions), two forward jets (VBF), etc.

Resonances: pair productions

Resonant final states with large multiplicities and low MET (overlap with RPV SUSY signatures)

Non-resonant signatures

High mass di-fermion final states (useful to constrain different four fermion operators of the form qqqq and qqll, including t and b), WW-scattering, etc.

Others

Displaced signatures, dark sector signatures, etc. (suggestions are welcome)

STATUS

- There are several ongoing projects (check the Wiki page https://twiki.cern.ch/twiki/bin/view/LHCPhysics/OtherBSM)
- We are also looking for people interested in the FCC program and willing to contribute
- It is not necessary to make a new study for the FCC, many studies done for the LHC can be extended to FCC
- No need, in the first phase, of detailed detector simulations
- Exploratory studies and new ideas that can help in defining benchmarks for the detector studies are needed

CONTRIBUTIONS

- M. Mangano, A. Thamm, R. Torre, A. Wulzer, Resonances at 100 TeV: jets vs leptons
- C. Doglioni, A. Boveia, Di-jet benchmarks (alro relation to DM group)
- C. Helsens, J. Ferrando, D. Miller, M. Mangano, B. Fuks, J.A. Aguilar-Saavedra, Boosted tops as a window to new physics
- B. Auerbach, S. Chekanov, J. Love, J. Proudfoot, A.V. Kotwal, Heavy resonances in t-tbar decays
- A. Ismail, I. Low, M. Low, L-T. Wang, WW Resonances in VBF
- A. Kotwal, Study of resonant double-Higgs production in the vector boson fusion process at a 100 TeV pp collider
- D.S.M. Alves, J. Galloway, J. Ruderman, J.R. Walsh, Running Electroweak Couplings as a Probe of New Physics
- G. Panico, J. Serra, J. Torre, A. Wuler, EWPT at 100 TeV
- G. Bambhaniya, J. Chakrabortty, T. Jeliński, M. Kordiaczyńska, R. Szafron, In quest of Right-Handed Currents [RHC]

CONCLUSION

- This group of the BSM studies is not intended to be a study of specific BSM models other than SUSY and DM nor at being an exhaustive exotica program at FCC
- In case of a discovery at LHC run-2 the full program will probably have to be rethought focusing on the new signal
- In case of no discovery at LHC run-2 the BSM program will be (mainly) based on signatures of fine-tuned physics and therefore staying close to the LHC benchmark BSM scenarios could be completely unmotivated
- In this subgroup we aim at studying (possibly) motivated and generic signatures that are not typical of SUSY and DM
- We aim at identifying classes of signatures relevant for FCC-hh studies, both in the direct and indirect exploration
- We aim at defining detector benchmarks useful for further detector studies

THANK YOU