
Introducing PyQt4*
for GUI Application Development

David Boddie Torsten Marek

shlomme@gmx.netdboddie@trolltech.com

EuroPython 2006, CERN, Geneva

© 2006 David Boddie and Torsten Marek
* Qt and Trolltech are registered trademarks of Trolltech ASA

What is Qt?

Qt is a cross-platform C++ framework for the development of GUI
applications.

Developed by Trolltech in Norway and Germany

Supported on Windows
®
, Mac OS X

®
, Linux

®
 and other Unix

®
 platforms

Available under the GNU General Public License on all supported platforms

Also available under a Commercial License for closed source applications

Not just a widget toolkit – other features for application developers

Features

Widgets, layouts, styles (native appearance on each platform)

Standard GUI features for applications (menus, toolbars, dock windows)

Easy communication between application components (signals and slots)

Unified painting system (with transparency, anti-aliasing and SVG support)

Rich text processing, display and printing

Database support (SQL) and model/view features

Input/output and networking

Other features

Container classes
Threading
Resources
XML processing

PyQt

Qt 3: PyQt is a set of bindings for Qt 3 by Phil Thompson at Riverbank
Computing.

Uses SIP to generate bindings

Comprehensive API coverage

Dual licensed under the GPL and Commercial
licenses

Community mailing list with around 500
members

PyQt3

1998: First release

2000: Windows
release

2002: Mac OS X and
Zaurus releases

PyQt4 2006: PyQt4 release

Wiki at http://www.diotavelli.net/PyQtWiki

PyKDE

KDE 3: PyKDE is a set of bindings for KDE 3 by Jim Bublitz that supports these
mainstream KDE libraries:

DCOP – interprocess communication

kdecore – application and configuration

kdeui – widgets, dialogs, user interface elements

khtml – HTML display (used by Konqueror and Safari)

kio – network transparent communications

kparts – high-level reusable GUI components

kdeprint – printing, dialogs, print jobs and management

Others (kfile, kmdi, kspell, kdesu, kutils)

Library Structure

Netscape Plugin

XMLOpenGL

Network

Workspace

Table

Icon view

Main Qt classes plus

SQL

Canvas

Qt 3

QMotifActiveQt

Qt 4

QtCore

QtNetwork

QtXml

QtGui

QtOpenGL

QtSvg

Qt3Support

QtAssistant

QtDesigner

QtSql

QtUiTools

QtTest

QAxContainer

QAxServer

QtCore

Object and meta-object system:

QObject, QMetaObject

Basic value types:

QByteArray, QString, QDate, QTime, QPoint[F], QSize[F]

File system abstraction:

QFile, QDir, QIODevice, QTextStream, QDataStream

Basic application support:

QCoreApplication – encapsulates an application
QEvent – communication (see also signals and slots)
QTimer – signal-based timed event handling

QtGui

Widgets:

QCheckBox, QComboBox, QDateTimeEdit, QLineEdit, QPushButton,
QRadioButton, QSlider, QSpinBox, etc.

Basic value types:

QColor, QFont, QBrush, QPen

Painting system and devices:

QPainter, QPaintDevice, QPrinter, QImage, QPixmap, QWidget

Basic application support:

QApplication – encapsulates a GUI application

Rich text:

QTextEdit, QTextDocument, QTextCursor

QGroupBox

QRadioButton

QCheckBox

QTabWidget

QLabel

QLineEdit

QTextEdit

QGroupBox

QLabel

QDateEdit

QTimeEdit

QComboBox

QListWidget

Display widgets

Input widgets

Text entry widgets

Buttons

Scrolling list and tree widgets

Tab widgets

QtGui

QtGui

QFrame

QLabel

QSpinBox

QSlider

QDial

AnalogClock

QSlider

QLabel

QTableWidget

Range controls

Tables

Scrolling views

Database support

Custom widgets

Using Widgets

window = QWidget()
window.resize(480, 360)
window.show()

Creating a top-level widget

Creates a widget

Resizes and shows it

button = QPushButton("Press me", window)
button.move(200, 200)
button.show()

Creating a child widget

Creates a button inside the
window

Positions and shows it

Creates parent and child widgets

Creates a layout to arrange widgets

Adds the child widget to the layout

okButton = QPushButton("&OK")
cancelButton = QPushButton("&Cancel")

layout = QVBoxLayout()
layout.addWidget(okButton)
layout.addWidget(cancelButton)
window.setLayout(layout)

Placing widgets in a layout

Using Layouts
Layouts manage child widgets and are responsible for:

Updating their sizes and positions

Providing default and minimum sizes

One

Two

Three

One Two Three Three

Two

Four

One

Five

Horizontal, vertical and grid layouts

yesButton = QPushButton("&Yes")
noButton = QPushButton("&No")

layout = QHBoxLayout()
layout.addStretch(1)
layout.addWidget(yesButton)
layout.addWidget(noButton)

nameLabel = QLabel("Name:")
nameEdit = QLineEdit()
addressLabel = QLabel("Address:")
addressEdit = QTextEdit()

layout = QGridLayout()
layout.addWidget(nameLabel, 0, 0)
layout.addWidget(nameEdit, 0, 1)
layout.addWidget(addressLabel,0,0,Qt.AlignTop)
layout.addWidget(addressEdit, 0, 1)

Signals and Slots

Signals and slots allow objects to communicate with each other via type-safe
interfaces.

QComboBox QTextEdit

Sender and receiver do not need to know about each other

Connections can be direct or queued

Sender and receiver can be in different threads

Signals and Slots
Making connections

class MainWindow(QMainWindow):

 def __init__(self):

 QMainWindow.__init__(self)

 fileMenu = self.menuBar().addMenu(self.tr("&File"))
 exitAction = fileMenu.addAction(self.tr("E&xit"))

 helpMenu = self.menuBar().addMenu(self.tr("&Help"))
 aboutAction = helpMenu.addAction(self.tr("&About This Example"))

 self.connect(exitAction, SIGNAL("triggered()"), qApp, SLOT("quit()"))
 self.connect(aboutAction, SIGNAL("triggered()"), self.showAboutBox)

 # Set up the rest of the window.

 def showAboutBox(self):

 QMessageBox.information(self, self.tr("About This Example"),
 self.tr("This example shows how signals and slots are used to\n"
 "communication between objects in Python and C++."))

Writing an Application

Creating an application

app = QApplication(sys.argv)
window = MainWindow()
window.show()
sys.exit(app.exec_())

Creates the application

Creates and shows the main window
(a QMainWindow subclass)

Runs the event loop then exits

Running an application in different styles

myapplication -style plastique
myapplication -style motif
myapplication -style windows

QApplication parses the command
line arguments

The -style option can be used to
override the native style

Main Window Classes

Main windows usually have

Menus – built using QMenu and populated with actions

Toolbars – built using QToolBar, these usually share
actions with menus

Dock windows – provided by
QDockWidget

A status bar – provided by QStatusBar

A central widget containing the main
GUI

User actions are represented by the QAction class

The action system synchronizes menus, toolbars, and keyboard shortcuts

It also stores information about tooltips and interactive help

Actions

To create an action, you can:

Instantiate a QAction object directly

Call addAction() on existing QMenu and QToolBar objects

Then you can share it with other objects.

Sharing actions

self.saveAction = QAction(QIcon(":/images/save.png"), self.tr("&Save..."), self)
self.saveAction.setShortcut(self.tr("Ctrl+S"))
self.saveAction.setStatusTip(self.tr("Save the current form letter"))
self.connect(self.saveAct, QtCore.SIGNAL("triggered()"), self.save)
...
self.fileMenu = self.menuBar().addMenu(self.tr("&File"))
self.fileMenu.addAction(self.saveAction)
...
self.fileToolBar = self.addToolBar(self.tr("File"))
self.fileToolBar.addAction(self.saveAct)

Multiple Document Interface

Applications are designed with different user interfaces:

Single Document Interface (SDI) applications use multiple main windows, each
containing a suitable central widget

Multiple Document Interface (MDI) applications use a QWorkspace as the
central widget

Multiple Document Interface

workspace = QWorkspace()
workspace.setWindowTitle("Simple Workspace Example")

for i in range(5):

 textEdit = QTextEdit()
 textEdit.setPlainText("PyQt4 "*100)
 textEdit.setWindowTitle("Document %i" % i)
 workspace.addWindow(textEdit)

workspace.cascade()

Item Views

Item views are complex controls that handle collections of items, each
representing a piece of data.

QTreeView or
QTreeWidget

QTableView or
QTableWidgetQListView or QListWidget

Qt 3's item views are populated with item objects

Qt 4 has item-based view classes and a model/view framework

Item Views

What's the difference between the item-based and model-based approaches?

Given an existing model...

tree = QTreeView()
tree.setModel(model)
tree.show()

table = QTableView()
table.setModel(model)
table.show()

Item-based tree of items Model-based version

tree = QTreeWidget()
tree.setColumnCount(2)
tree.setHeaderLabels(["Name", "Address"])

for name, address in phonebook.items():
 item = QTreeWidgetItem(tree)
 item.setText(0, name)
 item.setText(1, address)

tree.show()

Items are easy to use

You just create them and add them
to parent widgets or items

It all has to be done by you

Models automatically populate views
with items

Views (of different kinds) can share
models

We left out the tricky part...

Models and Views

Concepts

Models hold data for views to display

Views access data using indexes

Delegates display individual items for views

Roles describe the types of data

Reading
index = model.index(row, column, parent)
data = index.data(index, role)

Writing
model.setData(index, data, role)

Models expose pieces of data as items in tables

Items can expose tables of child items

Models and Views

A simple model

class ImageModel(QAbstractTableModel):

 def __init__(self, image, parent=None):

 QAbstractTableModel.__init__(self, parent)
 self.image = QImage(image)

 def rowCount(self, parent):

 return self.image.height()

 def columnCount(self, parent):

 return self.image.width()

 def data(self, index, role):

 if not index.isValid():
 return QVariant()
 elif role != QtCore.Qt.DisplayRole:
 return QVariant()

 return QVariant(qGray(
 self.image.pixel(index.column(), index.row())))

Models and Views

With a suitable model, views can be used to display any kind of data:

XML data can be displayed in a tree view

There's already a Qt example of a DOM-based XML model

Torsten decided to write an ElementTree model

Torsten's ElementTree model

Around 50 lines of code

Read-only

Copes with quite large files

Fast, even compared to pure C++ models

Database Support

Like Python, Qt 4 has classes for working with databases

These are integrated with the model/view framework

Accessing a database with a SQL table model

db = QSqlDatabase.addDatabase("QSQLITE")
db.setDatabaseName(databaseName)

model = QSqlTableModel(self)
model.setTable("person")

model.setEditStrategy(QSqlTableModel.OnManualSubmit)
model.select()

view1 = QTableView(self)
view1.setModel(model)
view2 = QTableView(self)
view2.setModel(model)

Database Support

Python has its own standard database API:

Included with many Python database modules

Many Python developers are familiar with it

Torsten decided to write a model for that, too

Accessing a database with a SQL table model

Scalable Vector Graphics (SVG)

SVG support can be accessed in two ways:

You can use QSvgWidget to load and display pictures in a widget

You can use QSvgRenderer to load and render pictures to any paint device

SVGs can also contain animations

Showing an SVG drawing:
widget = QSvgWidget(parent)
widget.load(filename)
widget.show()

Rendering a drawing on an image:
pixmap = QPixmap(200, 200)
renderer = QSvgRenderer()
painter = QPainter()
painter.begin(pixmap)
renderer.render(painter)
painter.end()

OpenGL Integration

Qt provides a QGLWidget (a QWidget subclass) to display OpenGL content:

The OpenGL context is handled automatically

Convenience functions to handle textures and colors

class GLWidget(QGLWidget):

 def __init__(self, parent):

 QGLWidget.__init__(self, parent)

 def initializeGL(self):

 # Set up display lists, OpenGL options.

 def paintGL(self):

 # Clear buffers, apply transformations,
 # paint.

 def resizeGL(self):
 # Resize viewport, recalculate matrices.

Custom widgets

Widgets can be combined to make composite widgets by subclassing an
existing widget class.

class AddressWidget(QWidget):

 def __init__(self, parent = None):

 QWidget.__init__(self, parent)

 nameLabel = QLabel(self.tr("Name:"))
 nameEdit = QLineEdit()
 addressLabel = QLabel(self.tr("Address:"))
 addressEdit = QTextEdit()

In the __init__ method:

Call the base class's
__init__ method

Create child widgets

Use layouts to make the contents resize nicely.

 layout = QGridLayout()
 layout.addWidget(nameLabel, 0, 0)
 layout.addWidget(nameEdit, 0, 1)
 layout.addWidget(addressLabel, 1, 0, Qt.AlignTop)
 layout.addWidget(addressEdit, 1, 1)

 self.setLayout(layout)

Lay out the
child widgets

Custom widgets

Custom widgets can also be built from scratch.

To make new controls

For decorative purposes

class CustomWidget(QWidget):

 def __init__(self, parent = None):

 QWidget.__init__(self, parent)
 # Initialize the widget.

 def paintEvent(self, event):

 painter = QPainter()
 painter.begin(self)
 # Do some painting.
 painter.end()

 def sizeHint(self):

 return QSize(200, 200)

In the __init__() method:

Subclass an existing widget class

Call the base class's __init__()
method

In the paintEvent() method:

Widgets are paint devices

Just use a painter to draw on them

In the sizeHint() method:

Return a preferred size to help the
layout engine

Custom widgets

They can also provide their own signals and slots...

There are lots of examples of custom widgets:

OpenGL Integration Revisited

You can also use QPainter to paint onto a QGLWidget:

Painting operations are translated to OpenGL calls

The result is accelerated 2D rendering

Relies on extensions for anti-aliasing, so you may be trading looks for speed

Qt Designer
Qt Designer is Trolltech's design tool for creating user interfaces.

Forms created with Qt Designer are stored in XML (.ui) files

These can be compiled to C++ with uic

You can also use pyuic4 to convert them to Python

Or you can use the Python uic module to generate the GUI at run-time

This presentation was created with Qt Designer.

The GUI is shown using PyQt4.

Thanks

Trolltech for Qt

Phil Thompson for SIP and PyQt4

Jim Bublitz for PyKDE

Paul Boddie for suggestions

The PyQt community (especially those on the mailing list)

Links
Trolltech: http://www.trolltech.com

Riverbank Computing: http://www.riverbankcomputing.com/

PyQt Wiki at http://www.diotavelli.net/PyQtWiki

