LINAC BEAM AND TRANSFER LINE REVISITED

Michele Bozzolan (BE/BI)

CERN, 9 September 2015

VINTAGE LT BEAM POSITION
Courtesy of L.Soby

Machine overview

Presentation is about shorted stripline BPMs installed in the transfer line connecting the LINAC2 with the booster. LINAC2 produce pulses of bunched protons spaced by 4.95 ns BPMs are shorted stripline

LINAC 2 PULSE seen from the current transformer

Beam position scalar value

The acquisition system records the instantaneous beam position with a sampling period of $40 \mathrm{~ns}(25 \mathrm{MHz})$ Only slices of the linac pulse are injected into the booster
Beam trajectory at the BPM position is defined as the mean position over the injected slice

Vertical beam position vs time of one LINAC 2 pulse

TRANSFER LINE V-TRAJECTORY (OP OUTLOOK) FOR ONE PULSE

OP ISSUE: vertical position fluctuations

SINGLE PULSE POSITION vs TIME @ BI.BPM30

VERTICAL TRAJECTORY OF 20 PULSES

- Uncorrelated fluctuations on the instantaneous position lead to increasing fluctuation on the scalar values with decreasing injection duration
- OP states the beam CANNOT move as BPMs show since 2014 start-up
- ABP had the same opinion

In BPMs we(BI) trust

- Extensive measurements excluded EMI, ELECTRONICS AND SIGNAL PROCESSING issues, see https://indico.cern.ch/event/407984/contribution/2/attachments/1127836/1610900/2015-07-17-BI TechBoard.pdf
- Literature, simulations and lab measurements confirm stripline BPMs works fine
- Preliminary SVD analysis from M.Wendt on all BPM for ~900 pulses show typical BPMs behavior with 6 main eigenmodes and a resolution on the order of 10um

- One inductive pickup by M.Gasior installed at the LT.BPM20 position in 2005 already showed high vertical fluctuations

Changing point of view

BI and OP were seeing the problem from two different point of view. Changing the perspective was the key to solve the impasse.

PHYSICISTS SIDE

It's a
lamp!

ENGINEERS SIDE

What is beam position?

Beam is a cloud of charges and we define the position of the cloud by mean of two numbers, but what is the relation between those numbers and the beam?
Imagine for example we have a evenly distributed beam and we scrape part of it. Do you think beam has moved or not?

BEAM PIPE CROSS SECTIONS

What's the BPM measuring?

If we have only a point charge, position is no more ambiguous: we have a set of 4 values coming from the electrods $\left\{\mathrm{V}_{\mathrm{x}+} ; \mathrm{V}_{\mathrm{x}} ; \mathrm{V}_{\mathrm{y}+} ; \mathrm{V}_{\mathrm{y}}\right.$ \} as input of our acquisition system and the position of the charge $\left\{\mathrm{x}_{1}, \mathrm{y}_{1}\right\}$ as output. For more particles we can apply superposition principle.

Point charge of value q

Δ / Σ algorithm for point charge

$\frac{\Delta V_{x}}{\Sigma V_{x}}=\frac{1}{S_{X}} \frac{q * x_{1}}{q} \rightarrow X=S X \frac{\Delta V_{x}}{\Sigma V_{x}}=x_{1}$

TWO CHARGES

$$
X=\frac{q_{1} * x_{1}+q_{2} * x_{2}}{q_{1}+q_{2}}
$$

N EQUAL CHARGES

$$
\begin{aligned}
& X=\frac{\Sigma_{N} x_{n}}{N} \\
& X^{\prime}=\frac{\Sigma_{N} x_{n}^{\prime}}{N}
\end{aligned}
$$

$$
X^{\prime}=\frac{d X}{d s}=\frac{q_{1} * x_{1}^{\prime}+q_{2} * x_{2}^{\prime}}{q_{1}+q_{2}} \quad X^{\prime}=\frac{\Sigma_{N} x_{n}^{\prime}}{N}
$$

SUPERPOSITION
PRINCIPLE

Transverse beam optics

Transverse properties of a single particle in a specific point along the line (s axes) are defined by the phase space coordinates (x, x^{\prime}) and (y, y^{\prime})
If only linear magnetic elements are present (dipole and quadrupole), transport of the particle between two longitudinal positions S1 and S2 is defined by a linear transformation with matrix \boldsymbol{M} that depends only on the optics of the line

[^0]
Transverse beam dynamics

Beam dynamics is simulated and optimized by MAD-X
From the settings of the line, the software calculate transfer matrix of the line
In order to calculate phase space along the line, the initial elliptical phase space has to be defined by the triplet ($\alpha_{0}, \beta_{0}, \varepsilon_{0}$)

Beam size is proportional to the beta's square root for a beam with a stationary distribution since charges are presents simultaneously over all the ellipse area (emittance)
For BPMs (measuring only the center of gravity) the beam size turn to position fluctuation over time as BPMs «see» only a point charge.
Beta function depends on the initial conditions so different initial conditions lead to different fluctuations along the line

The whole picture: all positions are correlated

V POSITIONS ON LT LINE FOR THE SAME PULSE

Positions of ALL BPMs show A COMMON PATTERN By SCALING and SHIFTING all traces can be OVERLAPPED Translating in mathematical language:

$$
y\left(s_{2}\right)=K_{1}\left(s_{2}, s_{1}\right) * y\left(s_{1}\right)+K_{2}\left(s_{2}, s_{1}\right)
$$

K_{1} measures the RELATIVE FLUCTUATIONS
K_{2} is the OFFSET between the measure and the optical center and it is not relevant for the rest of the discussion

How linear relation hold along the line

We take LT.BPM10 as reference and we verify how the linear relation behave along the line

$$
\begin{aligned}
& y_{B P M X}^{*}=K_{1} * y_{L T . B P M 10}+K_{2} \\
& \Delta_{R M S}=\operatorname{RMS}\left\{y^{*}-y\right\}
\end{aligned}
$$

Example of fitting in time domain: VERTICAL POS. Vs TIME ZOOM

	K_{1}	K_{2}	$\Delta_{\text {RMS }}[\mathrm{mm}]$
LT.BPM10	1	0	0
LT.BPM20	-1	-11.5	0.1
LT.BPM30	-2	-18	0.3
LT.BPM40	-2.2	-12.5	0.4
LT.BPM50	-0.45	-1.8	0.1
LTB.BPM10	1	4.5	0.2
LTB.BPM20	2.2	9	0.2
LTB.BPM30	2.2	9	0.2
BI.BPM00	-1	-4.5	0.1
BI.BPM10	-3	-5.5	0.2
BI.BPM20	1.6	2	0.3
BI.BPM30	6	13.5	0.4
BIx.BPM40	-5	-18	
BIX.BPM50	-3	-14	

Graphs of fluctuation (K_{1}) and rms error between measures and linear fitting

Position measurement in one point of the line predict position in the rest of the line B line has the higher K

Transport matrix check

To verify the A and B of the simulated matrix we look for an initial condition that fit the empirical formula for the position.
$\{\begin{array}{l}Y_{2}(t)=K_{1} * Y_{1}(t)+K_{z}\left(s_{z^{\prime}}, s_{7}\right) \\ Y_{2}(t)=A * Y_{1}(t)+B * Y_{1}{ }^{\prime}(t)\end{array} \quad \rightarrow \quad Y^{\prime}{ }_{1}(t)=\underbrace{\frac{K_{1}-A}{B} Y_{1}(\mathrm{t})}_{k}$

The solution is a beam center of gravity moving in a straight line in it's phase space along the pulse.
A linear transformation can shrink, expand and rotate but it always maintains a straight line where W is the fluctuation. With two different optics, calculated k matches the measured one.

OPTICS	SIMULATED M(BI.BPM50 \rightarrow BPM00)	K_{1}	$k=\left(K_{1}-A\right) / B$
MD	$\left[\begin{array}{cc}2.36 & 8.47 \\ -0.49 & -1.32\end{array}\right]$	-6	-1
NOMINAL	$\left[\begin{array}{cc}1.59 & 3.18 \\ -0.35 & -0.079\end{array}\right]$	3	0.44

MEASURED BPM PHASE SPACE @ BI.BPM00

What about the fluctuations?

Now we can try to check if the measured fluctuations match the square root of the simulated beta functions. Initially the didn't.

But matrix was ok, so we can try to change the initial conditions ...

NEW INITIAL CONDITIONS
$\alpha_{0}^{\prime}=-1 \quad \beta_{0}^{\prime}=0.4$

Results with the new initial values

With the same new initial conditions both nominal and MD optics fits.
As it must be only fluctuation in the region of modified optics changes.

Now we have full agreement between simulation and measures!

Position components and the «OP filter»

Instantaneous position is composed by a relative stable (pulse to pulse) low frequency ($<300 \mathrm{KHz}$) component and an uncorrelated (pulse to pulse and intra-pulse) high frequency component.

Low pass filtering reduce about 5 times the scalar position fluctuation but cannot be applied directly on Bix. BPM40 and Bix.BPM50 where signal is present only for the injection slice ($\sim 1 \mathrm{us}$).
However the linear relation between vertical positions can be applied to obtain the same goal:

$$
V_{B P M x}=\operatorname{LPF}\left(V_{B P M x}\right)+H P F\left(V_{B P M x}\right) \rightarrow \operatorname{LPF}\left(V_{B P M x}\right)=V_{B P M x}-H P F\left(V_{B P M x}\right)=V_{B P M x}-K_{1} * H P F\left(V_{B P M y}\right)
$$

Conclusions and outlook

- BPMs works well: vertical fluctuations are a beam property
- High beta \rightarrow High fluctuations
- Two differents behaviour in frequency domain
- «OP FILTER» smooths fluctuations
- Simulations match measures and fluctuations can be exploited as a verifying tool
- A new dipole will be installed to improve optics on the BI line
- MD using SEM grids
- MD with different debuncher phase

Acknowledgments

- OP G.Di Giovanni, B.Mikulec, PSB operators
- ABP O.Berrig, A.Lombardi, R.Scrivens
- BI M.Ludwig, L.Soby, J.Tan, U.Raich, M.Wendt

Appendix A: What about H plane?

H plane is much more stable than V line. Peak-peak fluctuation in the injected region of the pulse is on the order of 1 mm , more than 10 time less than in V plane for BI.BPM30
Simulation has good agreement with the measures already with the initials settings

Comparison of the pulse position vs time in H \& V plane for two different BPMs.

- SIMULATION $\frac{\sqrt{\beta(s)}}{\sqrt{\beta(L T . B P M 10)}}$ - MEASURE $\frac{\left|K_{1}(s)\right|}{\left|K_{1}(L T . B P M 10)\right|}$

[^0]: all is linear \rightarrow SAME MATRIX APPLY TO BEAM CENTER \rightarrow BPM measure is TRANSPORTED BY THE SAME MATRIX M

