

Overview of a Plan for Simulating a Tracking Trigger

Harry Cheung (Fermilab)

Geometry Layouts

- We have a number of strawman layouts
 - Original and more realistic Strawman A
 - Strawman B with superlayers of doublets
 - Long barrel strawman
 - Phase 1 strawman (pixel detector)

Geometry Layouts

- Strawman Geometry was supposed to limit the phase space
 - Already many geometry layout variations to simulate and study
 - Layout will be much easier once we know what track triggering method we need and what the "trigger layer(s)" look like (Doublet? Cluster shape?)
- Worse for forward region, no track trigger idea yet?

Long Barrel Strawman

Track Trigger Layers

- Top priority to see whether a (buildable) trigger doublet would work, how many are needed and what their parameters should be
 - This can be studied in any of the strawman geometries
 - Want to study both a single doublet and a "stack" of 2 doublets
 - Mark Pesaresi is studying trigger doublet performance in Strawman B
 - Studying p_⊤ thresholds for both a single doublet and pair of doublets
 - See Mark's talk from yesterday's Tracker session (layout and simulation)

Geometry

Considering a single stacked pixel laver at r=25cm, length=221cm

Current pixel system included in geometry

Outer geometry unnecessary at this point

Using latest version of Strawman B in CMSSW_1_8_4

Imperial College London

Sensor Geometry

Strawman B parameters modified in pixbar.xml and trackerStructureTopology.xml

Sensor choice:

tilted at 23° – to reduce cluster width by minimizing Lorentz drift

100µm thickness

28mm x 72.8cm sensor dimensions

z overlap - to fill gaps in z

100 µm x 2.37mm pixel pitch

256 x 30 pixels per module

Sensor separation varied between 0.5-4mm

Modification made to geometry to aid trigger studies - not yet part of StrawmanB

z offset – to match columns in top and bottom sensors with increasing eta

z overlap

Mark Pesaresi

Imperial College London

Algorithm Performance

Separation [mm]	Max Efficiency [%]	Fake [%] (or average number/event)	Reduction Factor	
0.5	99.05	0.73 (12.22)	8.04	
1.0	99.35	4.14 (25.58)	22.26	
2.0	97.745	17.83 (18.74)	95.99	
3.0	96.00	39.08 (23.76)	210.28	
4.0	92.95	47.27 (32.39)	254.35	

Performance of a detector stack at r=25cm for sensors with pitch 100µmx2.37mm. Correlation cuts optimised for high efficiency

Max Efficiency: Average maximum efficiency for a high p_t track to form a stub. Inefficiencies due to sensor doublet acceptances and algorithmic efficiency (window cuts)

Fake: Average fraction of stubs per event generated by correlating hits from different tracks

Reduction Factor: Average data rate reduction factor per event (N_{Stubs}/N_{Digis}) where N_{Digis} is number of hits with charge $> adc_{digi}$ for the whole stacked layer

Mark Pesaresi

Imperial College London

Again, the width of the transition region increases with separation. Due to:

- pixel pitch
- sensor thickness
- charge sharing
- track impact point

Efficiencies decrease with sensor separation due to the larger column window cuts – sensor acceptances and fake containment are issues

 p_{T} discriminating performance of a stacked layer at r=25cm for various sense separations using 10,000 di-muon events with smearing

Cuts optimised for high efficiency.

Row window = 2 pixels

Column window = 2 pixels @ 0.5mm; 3 pixels @ 1mm, 2mm;

4 pixels @ 3mm; 6 pixels @ 4mm

Mark Pesaresi

Imperial College London

Double Stack Correlation Algorithm

Correlate stubs in upper sensor with stubs in lower sensor – use upper sensor as seed (fewer stubs, fewer fakes)

Window cut in η applied – wide enough to allow for vertex smearing

Window cut in φ applied – wide enough to allow for low p_t tracks and scattering

Mark Pesaresi

Imperial College London

Double Stack Algorithm Performance

If the stubs are correlated, we can use the two stubs plus the vertex as r, φ points for a 3-point track p_t measurement – assumes track originates from (0,0)

Tracklet p_t resolution vs. track p_t and η when using a 3-point pt reconstruction measurement for 10,000 0-30GeV di-muon events with smearing

Using double stack correlation window cuts $|\Delta\eta| < 0.2, \ |\Delta\varphi| < 0.015$

Mark Pesaresi

Imperial College London

11

Double Stack Algorithm Performance

With a momentum measurement using two stacks, an effective cut or track p_t can be placed

Maximum efficiency is still determined by that of the single stack

A better track pt resolution using the double stack means that the transition region can be reduced

We would like to have better efficiencies at low p_t – this would require stacks with smaller sensor separations (or larger windows) increasing the number of stubs per layer and the number of combinatorics for the double stack algorithm

 $\ensuremath{p_{T}}$ discriminating performance using double stacks for 10,000 0-300 eV di-muon events with smearing

Using double stack correlation window cuts $|\Delta\eta| < 0.2, \ |\Delta\varphi| < 0.015$

Mark Pesaresi Imperial College

Track Trigger Layers

- Top priority to see whether a (buildable) trigger doublet would work, how many are needed and what their parameters should be
 - This can be studied in any of the strawman geometries
 - Want to study both a single doublet and a "stack" of 2 doublets
 - Mark Pesaresi is studying trigger doublet performance in Strawman B
 - Studying p_⊤ thresholds for both a single doublet and pair of doublets
 - Eric Brownson and Matthew Jones looking at the L1 single muon trigger rate with Fastsim,
 - Will study effectiveness of Mark's trigger doublet points and vectors
- How much does the performance of trigger doublets depend on
 - Exact Structure of the doublets?
 - Material of doublets and whole construction?
 - Need a robust trigger...
- What are workable alternatives?
 - Fabrizio Palla is studying track triggering using cluster shapes
- Must tackle the forward region for track triggering!

Tracking System Layout

- Once we know what the triggering layers should look like we can start narrowing the tracking system layout variations to decide on a baseline layout
 - Geometry layout tool will be very useful to quickly compare layouts: can compare many statistics (including surface, channels, occupancy, power, cost, bandwidth)
 - Tracker Layout Task Force will have an important role to help us converge to a viable baseline layout geometry (e.g. define realistic ladder and module structures; realistic material budgets and cooling layout; possible channel counts; overall detector construction, etc.)
 - What do we do about track triggering in forward region?
 - Can we give guidelines regarding what is feasible? E.g.
 - Is there more possibility to take data off-detector than in the barrel?
 - Use same technology for correlating forward disks as stacks of doublets?
 - Can we consider a cone/"elliptical" forward detector?
- Setting up a new geometry layout in the simulation
 - Once we have an idea of what the baseline layout looks like we can build the new layout relatively easily
 - How much configurability? Make fastsim more realistic

What Plan?

- No grand plan yet for plan of work beyond initial studies
 - Alessia Tricomi, Harry Cheung (Tracker Upgrade Simulations WG), Dave Newbold (Trigger Upgrade - Simulations WG), Anders Ryd, John Jones (Trigger Upgrade - Track Trigger WG) have discussed working together on the initial steps to make progress
 - Need to involve other WG: Sridhara Dasu, Jane Nachtman (Trigger Upgrade - Calorimeter Trigger WG), Tracker Upgrade - Muon Trigger (no-one yet)
 - Did not manage to make it to other WG sessions in this workshop, will need to talk together
 - Work with and guidance from Tracker Layout Task Force (headed by Duccio Abbaneo)
 - Group has not yet met, will have important contribution to plan/schedule
 - Work with other groups that might spring up, e.g. Cluster shape group led by Fabrizio Palla
 - The next slides that contain plans are my opinion

Working together

- The Tracker upgrade and Trigger upgrade simulations groups have worked together already to create the code to interface the simulated tracker information to the trigger code framework (to get TPG)
- Any plan should include how people in the various working groups, groups, or individuals can successfully work together
 - E.g. Ecal electrons sensitive to trigger layer placement (larger radius?)
- Any plan should not discourage innovations (that may be discovered in areas outside the immediate plan)
- Plan should include common tools so we can compare
 - Single set of SLHC software
- Before we work out the details people should be able to continue work
 - E.g. Trigger upgrade group work with generator 4-vectors
 - E.g. Tracker upgrade simulation group using private trigger primitive code to make progress (e.g. Mark Pesaresi's studies)

Scope of Initial Tasks

- Current simulation studies with limited manpower: simulation studies we expect to make progress in the next few months
 - Studies to see whether a (buildable) trigger doublet would work, how many are needed and what their parameters should be
 - Mark Pesaresi's doublet study is very encouraging
 - Still work to be done, e.g. study efficiency in pileup conditions
 - Need to work out realistic/buildable doublet structures
 - Will look track doublet info for the L1 single muon trigger rate
 - 2. Studies of a very long barrel detector of (mini-)strips
 - Study Phase 2 forward region options and doublet at large radius?
 - Studies of a Phase 1 strawman (Roland's options for pixel replacement/upgrade)
 - Including a study of a 4th barrel pixel layer
 - We need to define the Phase 1 Forward Pixel detector and possible forward detector (but that is external to simulation groups)

Tasks after the initial work

- Of course these studies could be/are in parallel with more manpower
- Trigger using cluster shapes (studies already ongoing Fabrizio Palla)
- Work out track trigger scheme in the forward region
 - Now we are only looking at a very long barrel
 - Will need input from the Tracking group to make a plan
- For doublet schemes
 - Any vertex information for pair of doublets?
 - Interest in standalone track vectors triggers?
- Moving to a newer CMSSW version and get the improvements with the latest version

Tracking Layout in ~6 months

- Once we know what the triggering layers should look like we can start narrowing the tracking system layout variations to decide on a baseline layout
 - Results from doublet study in L1 Muon trigger by March/April 2009 if possible
 - Geometry layout tool will be very useful to quickly compare layouts: can compare many statistics (including surface, channels, occupancy, power, cost, bandwidth)
 - Can we get the tool to output the geometry for use in the simulation in the timescale we want?
 - Tracker Layout Task Force will have an important role to help us converge to a viable baseline layout geometry (e.g. define realistic ladder and module structures; realistic material budgets and cooling layout; possible channel counts; overall detector construction, etc.)
 - What do we do about track triggering in forward region?
 - Will need lots of input from different WGs (what is the forum?)
 - Work on other needed tools: more realistic fastsim (pileup, etc.)

Plans after 6 months?

- Make the baseline geometry!
 - Do the needed simulation studies
 - Trigger performance
 - Tracking performance
 - Work on making simulation more realistic
 - Not only the tools, but also any hardware constraints
 - Work on making the baseline layout more realistic
- Learn when we get real data and feedback into simulations

Summary

- We have a short term focused plan
 - On studying trigger doublet performance
 - On the Phase 1 pixel layout
- There is a plan to get a baseline layout in mid-2009
 - If we take Peter Sharp's proposal to use Marcello Mannelli's layout we can start building the geometry (it is a variation of strawman B)
 - Need exact documentation on the proposed geometry
 - Can spend the time to converge on realistic structures/materials
 - Need a forum, etc. for WGs to work together (just layout task force)
- Plan to use real data to feedback to simulations