Proposal for a First Level Trigger based on Tracking

Contact Person: Fabrizio Palla Submitted Oct. 31 2008

D. Contardo, N. Giraud, W. Tromeur, Y. Zoccarato *IN2P3-CNRS, Lyon, France*

M. De Palma, G. De Robertis, L. Fiore INFN and University of Bari, Bari, Italy

S. Pelli, G. Nunzi Conti *INFN and CNR Florence, Florence, Italy*

G. Barbagli, R. D'Alessandro, M. Meschini, G. Parrini *INFN and University of Florence, Florence, Italy*

R. Dell'Orso, A. Messineo, F. Palla, E. Vataga INFN, University of Pisa and Scuola Normale Superiore, Pisa, Italy

D. Janner, V. Pruneri *ICFO, Barcelona, Spain*

E. Hazen, U. Heintz *Boston University, Boston, Massachusetts, USA*

R. Rusack University of Minnesota, Minneapolis, Minnesota, USA

G. Landsberg, M. Narain Brown University, Providence, Rhode Island, USA

Tracking Trigger driving idea

Select only tracks above a given p_T since they are very few

Design considerations:

- **Solution Service Solution Solution**
 - •i.e. same layers for triggers and data
- Limit as much as possible the needed bandwidth and number of channels for trigger

Trigger working model

- Subdivide barrel layers into many O(50 to 100) φ sectors

 - Match with the detector sizes. High p_T tracks well inside (already a momentum discrimination!)
- **Pata reduction and transfer (outer layers R>50 cm)**
 - Use silicon strip detectors
 - ono time stamp in synchronous readout
 - Reduce the data rate for Trigger purpose on detector
 - local data reduction using Cluster Width
 - Use very high speed data links O(10 Gbps) to limit the no. of links
- Process the data off detector
 - **■** Extend and rescale to CMS the CDF approach using Associative Memories (AM)
 - majority of at least 3 layers out of 4 in each trigger sector
 - "compute" p_T
 - match with muons and calorimeters
- Output of the Trigger
 - Tracks reconstructed above a given pT in each sector

Off-detector Trigger Logic

Each AM searches in a small $\Delta \phi$ and produces a set of tracks above a given pt

OFF DETECTOR

1 AM for each enough-small $\Delta \phi$ **Patterns**

Hits: position+time stamp All patterns inside a single chip N chips for N overlapping events (identified by the time stamp)

Fast data links

> Fvent1 AMchip1

Fvent2 AMchip2 AMchip3

Event3

EventN AMchipN

Data rate in Barrel - I

Use clusters instead of hits to first decrease the rate

- R=42 cm: clusters (hits) ~7 (22) MHz cm⁻²
- R=78 cm: clusters (hits) ~1.6 (6) MHz cm⁻²
- R=108 cm: clusters (hits) ~0.7 (3.6) MHz cm⁻²

(Note: if no zero-suppression applied (DIGI) rates are a factor 10 larger)

HITS CLUSTERS

Data rate reduction on sensor

- Select clusters from high p_T particles using the different the cluster width (CW) pattern
- Need a clusterizer ASIC after the FE stage.

Data rate in Barrel-II

Large reduction in data rate expected:

QR=108 cm : 170 kHz cm⁻² (it was 3.6 MHz cm⁻² hit rate)

Cluster rate **before** CW reduction

Cluster rate after CW reduction

Routing signals off the Tracker

- Even if CW computed with full granularity, for trigger needs a reduced granularity is acceptable
 - **(12 bits for full granularity; 375 μm "effective" pitch = 10 bits)**
 - A module (~9x4 cm²) is expected to route on average~≤ 220 (70) Mbps at 78 cm (108) radius at full granularity
 - Study several connection schemes between each module and the high-speed links "hubs" located at the end of each sector

 Internal links can use low power μ-twisted pairs (see B. Meyer talk at TWEPP 2008)

Fast Links

Telecommunication/IT standards

Put Laser power outside the detector and use modulators

- Normally uses electro-optical modulators (reaching up to 40 Gbps)
- Need to be tested in high fluence, low temperature and high B field

	Size (mm³)	Power (mW)	Driving Voltage (V)	Working Temp. (°C)	Magn. Fields Comp.	Availability
LiNbO ₃ MZM	≤ 125 x15x10	250 (modulator only)	≈ 5	0 to 70	Good	YES
InP MZM	~ 60 x13 x 8 (laser included)	250 (modulator only)	≈ 5	0 to 70	Poor	YES
Si MZM	50 x 15 x 8 (estimate)	===	≈ 1	===	Good?	NO
EAM	~ 50 x30x10	≈ 1000 (TEC)	≈ 2.5	-20 to 70 (case)	Good?	YES

Digression on modulators

- The FOM is the V_{π} •L that for industrial standards has been set to 12 Vcm since many years, and the usual operating voltage was 5 V
 - **№** Very recently, the ICFO group has reduced the FOM to 8 Vcm, affecting the operating voltage, which would correspond to decrease the voltage to 3 V.
 - F. Lucchi, D. Janner, M. Belmonte, S. Balsano, M. Villa, S. Giurgola, P. Vergani, V. Pruneri "Very low voltage single drive domain inverted LiNbO3 integrated electro-optic modulator" Optics Express 15, 10739-10743 (2007)
 - - our typical distances are less than 200 m and therefore we are convinced that the driving voltage could be safely reduced
 - Θ The driving voltage V_{π} •L scales inversely with the laser wavelength
 - even further reduction in the driving voltage could be achieved by operating the device to lower wavelengths wrt those used in the commercial devices (1550 nm typical)
- The longitudinal dimension of the modulator is dictated mostly by the packaging, but it could be reduced with particular cares
 - ⊕ For example the plastic stress relief that connects the fiber to the modulator is typically 3-5 cm long. We want investigate modifications that allow safe handling while reducing the footprint

Some interesting products

SPECIFICATIONS

http://www.avanex.com/Products/datasheets/Transmission/2613 PwrBitXS10-1700-2000.pdf

Facilities Communication of the Communication of th		Units
Optical		
Operating Wavelengths Range	C- and L-Band	
Insertion Loss	4	dB
Extinction Ratio (DC), 0-Chirp Version	≥ 20	dB
Note: Prechirped Versions for 1700 ps/nm, 2000 ps/nm or Custom are Available on Request.		
Optical Return Loss (without connectors)	≥ 45	dB
Electrical		
S ₂₁ Electro Optic Bandwidth (-3 dBe)	12.5	GHz
S,, Electrical Return Loss	< - 10	dB
RF V _z Voltage (@ 1 kHz)	5.0	V
Bias V _π Voltage (@1 kHz)	6.9	V
Dynamic Extinction Ratio (0-chirp version)	13	dB
10.7 Gb/s PRBS Electrical Drive Voltage (V _{sm})	5.0	V

CONNECTOR AND FIBER SPECIFICATIONS

RF Input Port	GPO
Bias and VOA Connector	Solder pins
Input Fiber	Corning/Fujikura SM15P UV/UV400
Output Fiber	Corning SMF-28 [™] or single mode ITU-T G.652¹

Note 1. Other output fibers available on request.

4. OPTICAL AND ELECTRICAL CHARACTERISTICS

(TLD= 45°C, Tc=0 to 75°C, unless otherwise specified)

(TLD= 45°C, Tc=0 to 75°C, unless otherwise specified				:d)		
Parameter	Parameter Symbol Test Conditions M		Min.	Typ.	Max.	Unit
Threshold Current	Ith	CW			35	mA
Operation Current	Iop				100	mA
Fiber Output Power (Average)	Pavg	If = Iop, under modulation	0			dBm
Peak Wavelength	λp	If = Iop	1530		1565	nm
Side Mode Suppression Ratio	SMSR	If = Iop	35			dB
LD Forward Voltage	Vf	If = Iop, CW, $Vm = 0V$			1.7	V
Monitor Current	Im	If = Iop, CW	50		1000	μA
ON-Level Modulation Voltage	Vo		-1.0		+0.5	V
Modulator Drive Voltage	Vpp			2.0	2.5	V
Extinction Ratio	ER	Note(1)	9.5			dB
Dispersion Penalty	DP	800 ps/nm, BER at 10 ⁻¹² Note(1)			2.0	dB
Tracking Error	TRE	Im=const. 0/25/75°C	- 0.5		0.5	dB
TEC Current	Itec	If = Iop			1.0	Α
TEC Voltage	Vtec	If = Iop			2.5	V
TEC Power Consumption	Ptec	If = Iop		0.65		W
Thermistor Resistance	Rth	25°C	9.5		10.5	kΩ
Thermistor B Value	Bth	25°C/50°C		49 00		K

Note(1)9.95328Gb/s,231-1NRZ

OKI OL5172M Integrated Laser+EAM with small footprint (3.5 cm) and 2.5 V driving voltage

F. Palla INFN Pisa

Pattern matching in CDF (M. Dell'Orso, L. Ristori – 1985)

The pattern bank is flexible set of pre-calculated patterns:

- >can account for misalignment
- > changing detector conditions
- >beam movement
- > ...

The Pattern Bank

• • •

F. Palla INFN Pisa

Associative memories evolution

Section Sec

- A good compromise is the standard cell approach currently used for the SVT CDF upgrade: J. Adelman et al., Nuclear Science Symposium, 2005 IEEE, vol. 1, 2005, p. 603.
 - ©0.18μm (INFN-Pisa), 5000 patterns/chip, 6 buses input lines, 50 MHz/bus, 18 bits/bus
 - produced by UMC (Taiwan) design time ~8 months + 2 months production

Profession For east for 2013:

- 90 or 65 nm technology would allow higher density pattern
- Sector 4 higher clock speeds achievable

Data switch

- Each AM chip will receive inputs from different layers in the same trigger sector
 - **Q**depending on the I/O speed and processing time a single AM chip cannot sustain the bandwidth of a single sector
 - Forecast ~3.6 Gbps (200 MHz x 18 bit) AM/input to be compared with ~10 Gbps of the busiest sector

Building e/μ / γ / τ objects with AM

- Correlation using AM chips is naturally embedded
 - **⊌**Input the AM with
 - **QL1 Muon primitives**
 - **► Muon: play with isolation cuts**
 - **QL1** Calorimeter primitives
 - **⇒** Electron
 - **→**Jets

 - Single or triple track match: Tau
 - Primary vertex correlation (remember 400 primary vertices!)

Tracker

Muon
Calo

What this proposal will study - I

- On-detector data reduction using Cluster Width
 - Strip sensor design and locations (see later)
 - Data formatting and estimate of the detector bandwidth
 - **QClusterization ASIC dimensioning**
 - a first FPGA prototype foreseen on the first year, followed by conceptual ASIC, first in 0.35 µm technology; possibly followed in lower pitch submicron technology
- Simulation of the performance
 - We will work in symbiosis with the simulation group as well as the trigger one
 - **Want to study the effect of the performance on benchmark physics channels**

What this proposal will study - II

- Data shipment off-detector using high speed links
 - **Procurement of MZM and drivers**
 - First choice will be LiNbO₃ modulators from several vendors (Avanex, JDSU or Photline)
 - If Si-based modulators will be available (Intel) they will also be procured
 - Irradiation at several facilities followed by qualification
 - Univ. Massachusetts Lowell facility (proton, neutron)
 - Labec Florence (proton)

 - Want to study modifications with Companies, possibly also to be performed at ICFO Labs.
- **CNR Florence and ICFO Barcelona have expertise to test and qualify MZM**
- We will work in conjunction with Versatile link R&D

What this proposal will study - III

- Organization and dimensioning of the Trigger logic
 - Dimensioning of the number of patterns and AM chips
 - depends upon the (coarse) picth segmentation, the number of layers and detectors in a sector, the minimum pT threshold and the number of sectors
 - **⊌**Dimensioning of the Switch
 - Will depend upon the effective speed of AM chips
 - Need to follow the development of the new chips by FTK collaboration (outside CMS)
 - **❷**Want to develop a prototype switch and study the best architecture to distribute clusters to the AM chips
 - based on FPGA and high-speed LVDS links

• Profit of recent developments from SLIM5 collaboration, as well as of past

experience in D0

http://www.pi.infn.it/slim5/

Sensors and Layers

Use silicon strip detectors

- **Want to study the effects of several parameters:**
 - pitch and thickness
 - material substrate (p or n bulk will influence the Lorentz angle)
 - strip length
 - Electronics front end coupling (AC vs DC), noise and cross talk
 - Optimize radial distance
- **Q**Concentrate on single sensor only.
 - Alternative schemes such that of W. Erdman and R. Horisberger will be evaluated if implemented by the simulation working group.

Some (very) preliminary results

Preliminary studies done with a modified Strawman A*:

Particular Series Series Series Series Detection layers located at: 78, 87, 97, 108 cm (current last 4 TOB)

9290 μm active thickness, 91.5 μm pitch (97 and 108 cm layers) and 122 μm pitch (78 and 87 cm layers), n-type bulk, 4.65 cm strips length, AC coupling, 3% inter-strip couplings

*Some dimensions constrained by the Strawman A

approach

no Lorentz angle compensation

• 12192 mini-modules, 7.96 M channels

Note module overlap between sectors

F. Palla INFN Pisa

%&+Ł Ż

Cap. couplings and Lorentz angle

Cluster width for muons above 10 GeV/c

Qclear effect due to capacitive couplings and Lorentz angle

Note the TIB is compensated

3 % CC

F. Palla INFN Pisa

1% CC

Some (very) preliminary results

Fraction of muons with minimum number of clusters in any of the 70 trigger sectors (left) and number of "tracks candidates" per sector made out of 3 clusters above a given p_T (right) per bunch crossing (400 min. bias)

Elena Vataga (Pisa)

- APV at the borders are shared between sectors
- Track candidates per sector plot not yet using patterns some triplets having 2 clusters in common still doubly counted (ghost)- expect more reduction in the next weeks

Job sharing

Institute\Item	Cluster width Simulation & Validation	AM chip, off-detector trigger processors and switch	Links	Electronics
Lyon IN2P3	X	X		X
Bari INFN	X			X
Florence INFN/CNR	X		X	X
Pisa INFN	X	X		
Barcelona ICFO			X	
Boston University		X		
University of Minnesota			X	
Brown University	X	X	X	

Timeline

T. 177		V	W 4
Item\Year	Year 1	Year 2	Year 3
Cluster width Simulation & Validation	LHC collision data analysis. Tracker layout geometry and basic characteristics of CW algorithms. Sensor and strip dimensions versus radius. Determination of the data rate and data reduction efficiency.	processes. Experimental set up to verify the CW method	Trigger performances on benchmark processes. Test beam measurements and analyses
AM chip and off-detector trigger processors and switch	Evaluate existing R&D projects, testing existing hardware if appropriate. Test board design to test timing performance. Preliminary system	Trigger efficiencies and trigger sectors dimensioning. Design and fabricate prototype PCBs to demonstrate key features of system design. Design firmware for system	Dimensioning of the system using existing solutions for AM chips. Fabricate updated prototypes if required. Evaluate operation of system using prototype detector in available test benches.
Links	Commercial opto-link devices survey and the GBT project adaptability. Plan of the experimental tests on external MZM devices and drivers.		Validation of the custom device. Proposal of link system.
Electronics	On detector electronics: architecture requirements and survey of existing solutions and projects. First detector prototype assembly. Telescope procurement. Clustering FPGA and ASIC conceptual design.	discrimination algorithm.	Solutions for silicon data connection to optical links. ASIC second submission Test beam and result analysis.

BACKUP

ICFO Optoelectronics group

15 Members:

1 Group leader, 4 post-docs, 6 PhD students, 4 Research engineers

Research topics:

- Micro- and nano-engineered electro-optics (EO) and acousto-optics devices
- Ultra-thin metal films for transparent electrodes
- -Photonic crystal fibers (PCF) and nanowire devices

Ongoing projects:

- -Ultra low voltage and broad band integrated EO modulator (Ministry of Research)
- -Quantum transceiver (European Space Agency)
- -High temperature PCF sensor (European Space Agency)
- -Head up display for car safety (Ficosa, Seat, AD Telecom)
- -3D liquid crystal cell for display (AD Telecom)

Examples of fabrication of low voltage Modulators and ultra thin metal films Done at ICFO

(IFAC

Materials and Devices for Photonics - MDF Group

Activities on glass planar waveguides, fibres and microcavities for telecom and sensing

People

- 5 researchers
- 1 post doc
- 1 PhD student
- 1 graduate student
- 2 technicians

contact: s.pelli@ifac.cnr.it

Channel waveguide in Er³⁺-doped glass

Fringe planes

High Q microcavities

Main research topics

- Rare earth doped oxide glasses and glass ceramics, photorefractive film and polymers.
- Planar waveguides by ion-exchange, UV imprinting, ion implantation; waveguide and fibre gratings; waveguide lasers and amplifiers.
- High Q Whispering Gallery Modes (WGMs) microcavities.

Prism

Waveguide gratings

Fabrication facilities

 Class 100 (and class 1000) clean room with Mask Aligners, RF Sputtering, Reactive Ion Etching, Spinner, Profilometer.

Characterization labs

- Laser sources including Ar, Ti:Sapphire, Nd-YAG, KrF excimer; semiconductor tunable lasers in S & C band and pump lasers for optical amplification.
- Commercial and in-house developed test equipment for waveguides and fibres characterization, microcavities analysis, materials spectroscopy.

Class 100 clean room

Silicon based modulators

Extremely attractive

- **Preduced power consumption and dimensions**
- possibility to embed in the readout chip

40Gb/s Silicon Laser Modulator

A proposed silicon module layout

Two step approach

1. Cluster width local reduction

W. Erdmann R. Horisberger

Who is proposing FTK & schedule

University of Chicago

E. Brubaker, M. Dunford, A. Kapliy, Y.K. Kim, M. Shochet, K. Yorita

Laboratori Nazionali di Frascati

A. Annovi, M. Berretta, P.Laurelli, G. Maccarrone A. Sansoni

Harward University

M. Franklin, J. Guimaraes da Costa, C. Mills, M. Morii, J. Oliver

University of Illinois C. Clobanu, T. Liss, M. Neubauer

Dipartimento di Fisica e Istituto Nazionale Fisica Nucleare Pisa V. Cavasinni, F. Crescioli, M. Dell'Orso, T. Del Prete, A. Dotti, P. Giannetti, G. Punzi, C. Roda,

F. Sarri, I. Vivarelli, G. Volpi

Istituto Nazionale Fisica Nucleare Roma 1

M. Rescigno

- R&D Proposal to work on TDR: presented in July. Approved Feb 2008
- 1 year to produce the TDR (2008)
- 3 years to build the system (2009-2011)
- first data taking with baseline LHC (~ when lumi 10E34 cm⁻²s⁻¹)
- upgrade for SLHC with possible extension @ level 1

27 marzo 2008

Feeding FTK @ 50KHz event rate

FTK

1/2 \$ AM

2

ATLAS Pixels + SCT

Allow a small overlap for full efficiency

6 buses 40MHz/bus

7+4 Logical Layers: full η coverage

~350MHz cluster/layer (10E34 cm $^{-2}$ s $^{-1}$ lum, 50kHz ev.)

27 marzo 2008

Alberto Annovi

31