Trigger Architecture Studies

- ▶ Take "architecture" to encompass:
 - Definition of trigger objects
 - Object ID and data reduction algorithms
 - Data flow {into; out of; within} system
- Factorisation of problem
 - Production of trigger primitives (see other talks in this session)
 - Trigger architecture and algorithms
 - Optimisation of data reduction and cuts (future work)
 - Probably not a good factorisation... large interference
- Wider problem than just tracking trigger
 - Probably, necessarily so
 - ▶ At some stage in the L1, must combine objects from all subsystems
 - ▶ Can take inspiration from current HLT though constraints are different
- As usual, more questions than answers

Trigger Strategy

LHC trigger strategy

- Trigger objects: leptons, photons, jets, global energy sums
 - p_t thresholds used for control of rate
 - Multi-object triggers used wherever possible

SLHC trigger strategy

- Current strategy should be efficient for rare heavy states
- ▶ Physics constraints (W mass, heavy quark b/g spectrum) unchanged from LHC?
- Exclusive multi-object triggers will be important
- Need to find robust object ID algorithms against increased background
- ▶ Rate / efficiency targets are the same as LHC (better would be nice, e.g. for tau)

Tracking information

- Use to back up the existing lepton ID algorithms
- Can be used for veto purposes (local jet activity), and for object track match
- Possibility of multi-object vertex match is very interesting
- ▶ Tracking input needs to be 'good enough' for rate control, not perfect

Constraints / Drivers

- Trigger upgrade: key technical constraints
 - Additional material in tracker volume
 - On-detector processing in tracker (power, inter-layer communication)
 - ▶ Bandwidth from tracker to off-detector systems
 - ▶ IO density in off-detector trigger logic
 - Logic density should not be a major constraint
 - Latency
- First thinking on architecture
 - ▶ Need simple, robust approach for trigger primitives with p_t-cut
 - Stacked tracking one promising approach Complexity? Robustness? Power requirements?
 - Bandwidth reduction is key
 - "Fixed object count" approach; multiple steps of on-detector data reduction
 - Keep in mind that we are looking for isolated objects
 - Drive track-finding from calo / muon objects
 - Cuts down complexity of tracking algorithms + inter-system IO
 - ▶ These ideas are now quite old alternatives exist

Exemplar Concept

- Region-of-interest
 - Local tracking also used in HLT
 - Regional approach at L1 is similar
 - => regional segmentation in phi
 - As per existing trigger segmentation
- HLT has global calo info
 - So brem recovery possible, unlikeL1
 - ▶ Effect on electron matching?
- Alignment / beam posn
 - ▶ Similar concerns at L1 as in HLT
 - We can only rely on mechanical alignment & crude beam posn
 - ▶ Robustness must be shown

Some Possible Shortcuts

High p_t tracks only

- Cuts down search region for track finding (but charge ID harder?)
 - e.g. 4GeV/c p_t track bends though only +/- 1 trigger region

Isolated objects only

- ▶ If multiple primitives are found in a region, simply flag this
- ▶ We are looking for regions with {1, 2, 3, many} high pt tracks
- High track count could be used in a jet veto algorithm

Seeded track finding

- Do not require an exhaustive track search
- ▶ For muon ID, perhaps even a single point is enough
- ▶ For electron ID, difficulty could be sensitive to layer placement trade-off

Vertex matching?

- ▶ Is this feasible? Clearly cannot separate 400 vertices
- May cut down background rate enough to be worthwhile

Exemplar Concept: Dataflow

- What is the interplay with a Phase-1 upgrade?
 - e.g. remodularisation of the L1 hardware

Simulation Studies

▶ Do these (or similar) ideas work?

First architecture studies are under way, but progress has been slow

Testing the basic ideas

- Four-vector level simulation can answer many of the most basic questions
- Allows a rapid feedback to tracker design
- Can study gross changes number of layers; number of objects; etc
- Can estimate order-of-magnitude dataflows

Introducing realism

- When track primitives are available, can begin more realistic studies
- Must find out where the points of uncertainty are for detailed simulation work

Organisation

- ▶ Requires input from *all* L1 subsystems (calo, muons, tracking)
- Requires agreement on the basic approach fairly soon
- Coherent trigger upgrade group now forming more simulation effort needed

Example Code Structure

- Prototype track trigger code structure (Jim Brooke)
 - Concrete contributions now coming from several institutes

Track Trigger Simulation Roadmap

- Four-vector level studies
 - ▶ Remainder of 2008 window of opportunity
- "Perfect" detector studies (early 2009)
 - ▶ Parameterised response for upgraded calo / muon trigger
 - Track primitives from tracker upgrade simulation (under devt)
- ▶ Introduce realistic constraints (2009-10)
 - Fixed number of objects; coarse resolutions; limited intercommunication
- ▶ Realistic simulation (2010?)
 - ▶ Fast or full simulation route?
- ▶ Bit-level emulation (2011?)
 - Allows firmware design / debugging
- Schedule clearly depends on available effort

Software Issues

- We expect to encounter difficulties
- Performance issues
 - ▶ Full simulation of 10^35 lumi crossings not yet demonstrated
 - ▶ Trigger simulation requires ~all subdetectors in simulation, and large samples
 - e.g. imagine trying to study detailed behaviour of Ht trigger at SLHC: ~ impossible today.
 - What role can fast simulation play here, and at which stages?
- Software issues
 - ▶ A ground-up trigger simulation code is a significant software project
 - ▶ The current software took ~years to construct and validate
 - What can we reuse, what needs to be redone?
 - Opportunity to use a common approach for all subsystems?
 - What are the interfaces to the (upgraded) subdetector simulations?
 - ▶ Does this link into the possible use of common hardware?
- Again, significant (expert) effort needed here
 - ▶ We should avoid divergent approaches, even for early studies

Summary

- ▶ SLHC L1 trigger studies are starting in earnest
 - ▶ Some first ideas on architecture have been identified
- "Architecture" has strong interplay with detector upgrades
 - ▶ In particular, the tracker
 - Must decouple the work to some extent to make progress
- Four-vector studies may tell us a lot in the short term
 - But we will quickly need to move beyond this
- Need to start considering the software framework
 - Building upon the expertise gained in the current system
- More people welcome and needed!

