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@'Q - Vacuum photodetectors: present and future &

What do we expect at SLHC?
VPT properties

Anticipated losses in VPT performance at LHC
- Photocathode fatigue
- Faceplate darkening

Possible future approaches

A word of caution

Summary
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é'@g;f What do we expect at SLHC?
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Dose versus 77 in EE (LHC)
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@ -~ Neutron fluence (>100keV) Iin EE
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@ - CMS Vacuum phototriodes

W@ RAL

Vacuum Phototriode (VPT):

Single stage photomultiplier
tube with fine mesh grid anode

Type PMT188 "
National Research
Institute Electron,

St Petersburg

40 Favourable B-field orientation in EE

(VPT Axis: 8.5° < 0] < 25.5° wrt to B )

Active area of ~ 280 mm?/crystal

—
¢=26.5 mmI ‘ EP
\ ‘ Bialkali’ (CsK,Sb) photocathode
1 . + dynode coating
2.5 _ B
= E Gain8-10atB=4T

MESH ANODE e QE.~20% at 420 nm
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& STFC

Gain in a strong magnetic field

W@ RAL
12 B-field immunity requires a very fine anode
. mesh
— Anode pitch =10 um
ch Primary electrons should pass through the
£ & anode and strike the dynode, but secondary
° ey electrons should be captured by the anode
i | — Anode transparency = 50%
2
0 ‘ | | | :@600} .
0 200 400 600 800 00 | 5 [ * " & " . = = =
Dynode Voltage %500_ -
. . . 5 400
Gain ~ 10 achieved with: S Tilt angle =15°
- High bias voltages: V(A)/V(D) ~ 1000/800 & 300,
- CsK,Sb coating on dynode %
— secondary emission coefficient ~20 g 200
©
2 100L
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Magnetic field (Tesla)
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- Response vs tilt angle

W@ RAL

Schematic of anode grid
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@ Phototube ageing

W@ RAL

~ 10 years ago, ageing tests were made 100 ¢ - 20
at RAL and at Brunel on 1 inch VPTs from lc(0) =200 nA E
several manufacturers, at B=0 and
B=1.8T. Most tubes showed similar
behaviour. These plots are for RIE tubes.

The fall in anode response is
dominated by degradation of the
photocathode

The gain remains ~ constant
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1.6 0.1 %‘ ® ~-RIE#50, B=1.8 T, DC LED @ 200 nA
é’ -+ RIE#50,B=0T, DC LED @ 200 nA
30 days at I,,(0) = 200 nA °
— ~650fb! atn=2.9 S I
- _ 0 2 4 6 8 10 12
— ~ 2000 fb 1 at 77 =25 Time[days]
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@ - causes of photocathode degradation

W@ RAL

- Positive ion bombardment Photocathode lifetime is often expressed
- Cs desorption as the ‘charge lifetime’, in Coulombs/cm?

- Oxidation due to faulty metal in glass seals +<— Not a problem with well-constructed tubes

- Electrolysis of the glass of the window <— Bias with cathode at 0V (a/c couple anode)
- Other
100 ¢
Measu.rements.on an RIE tl_Jbe show a 14(K) = 200 nA
behaviour that is well described by the sum 90

B=0

of two exponential terms — indicating two 0

distinct effects. §

These are sometimes termed ‘conditioning’ @ 50 |

and ‘ageing’. 8 | R=R,{0.225 exp(-1/0.65) + 0.775 exp(-1/280)}
Assuming linear scaling to a typical EE/LHC % 07

photocurrent of 2 nA: o 0

C, ~0.25 and 1, ~ 65 days % 30 -

C, ~0.75 and 1, ~ 3x10* days ®r 20

T4 IS consistent with a simple estimate of the 10 1

time to sweep up the residual gas in the 0 —
tube (positive ion bombardment) 0 10 20 30 40

Ti D
It is tempting to attribute 1, to Cs desorption ime [ Days]
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@) Positive ion bombardment

W@ RAL

\g(\lj) 1\6866)\/ 6\3/0((?\)/ Photocathode damage caused by positive ion
. . N\ bombardment increases with ion energy.
: — Pre-condition by operating the tubes at low
e bias for ~100d at I, = 2nA ??
e ,Lc (tests are planned but note importance of gain)
/\/\/\/ —t (Note: in principle one could precondition the tubes
I’ R I as diodes with V(K) = V(A) =0 and V(D) = -200V,
| : | using the dynode as the photocathode. In this
! configuration all the ions would be swept on to the
\ : ) dynode, which appears to be less sensitive to
damage.
Not to scale!! However, without internal gain, this would take a
The secondary emission coefficient of the prohibitively long time at practical levels of
dynode ~20. illumination.)
— Positive ion production is dominated by Note also that positive ion damage self-anneals
secondary electrons - to some extent when a tube is ‘rested’ for
both in the anode-dynode gap several months — so a pre-conditioning strategy
and the anode-cathode gap would need repeating.
lons strike the cathode with <E(I")>=900eV
lons strike the dynode with <E(I")>=100eV
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é@sm Radiation-darkening of faceplates (n & y)

W@ RAL
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& °¢ ‘Ruggedizing’ vacuum photodetectors (1)

W@ RAL

Window transparency:

Fused silica (‘quartz’) is extremely radiation hard, but requires ‘graded seals’
— increased cost, increased length, increased vulnerability to He ingress.

However, UV-transmitting and Ce-doped glasses with improved radiation resistance
are now available

100
US-49A faceplate exposed to 10'® n/cm? 30 | .
together with a y dose of 1600+250 kGy = . Neutron filience 7x10° nicm?
[¥u.l. Gusev et al., NIM A 581, 438, (2007)] 2 ol .Y i Accompanyingydose ~100kGy
@ 3
Unfolding neutron damage using = 5 5 _—:—_8 gg b?tforg w:je?dlghon
extrapolated %°Co data (and ignoring Vs % 40 - S RN e : — :a er:lrra |:a |on:
from induced activity in the glass): I: Ylu.I.Guslev et aII. VCI C;)nf, Vielnna, 2604
— AT/T, (neutron) < 15% 20 - ; SETERE SRR P.R.Hobson et al., Astroparticle, Particle
! and Space Physics, Detectors and Medical

for EE = 3.0 at SLHC Physics Applications, Como, 2003

0 F ( ( ( ( ( ( (
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@'Q > 'Ruggedizing’ vacuum photodetectors (2)

Positive ion damage (‘conditioning’):

» Improve the vacuum: for example, incorporate a getter
— tests on a single device during R&D for CMS showed a marked improvement.

» QOperate at low bias voltage
- incompatible with large internal gain — use vacuum photodiodes?

Caesium desorption:

Popular high efficiency photocathodes for visible light almost all incorporate Cs.

However, alternatives are available:

E.g. ‘High temperature bi-alkali’ (Na,KSb) (used in oil-well logging)
- Q.E. ~16% at 400 nm.
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& STRC EE replacement/upgrade??

W@ RAL

PbWO, — LYSO ?
Aeriee ~ (380-460) nm, LY(LYSO) ~ 200 x LY(PWO)

emiss

What photo-detector?

Silicon devices:
Neutron damage — high leakage currents — amplifier noise?

‘Nuclear counter effect’ (for a simple photodiode, direct sensitivity to shower leakage
particles >> sensitivity to scintillation light — high energy tail on energy measurement)

APD?

V(K) V(A)
Vacuum devices: oV <100V
- Good match to biakali photocathode ( )
- Internal gain not necessary
e

— Vacuum photodiode?

AVAVAVe

Na,KSb
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@) EE Activation

@ RAL
4 LHC (ECALTDR) gl
150 ‘ -
I ﬁ 140 |24026
rcm) = P ]
& 2 ( =
100 I Estimated dose rate in uSv/h after 29| |1 d
- 60d at (£) = 5x10**cm?s™ and 1d 150l 15
- cooling. (CMS closed) soe| 01 o
50 | [ -
" After 4 months cooiling the dose O, L
rates are ~2.5x lower 330 250 300
Op----- e o - ®- - —-—---—- - ---0--—-— - - -
10 15 51 240 240 250
o 10 200 300 . 400

Occupational dose limit: 20 mSv/yr

(Note: this is the legal limit, the normal CERN limit is
6 mSv/yr — except for the (very few) ‘Class A’ workers)

Assume induced activity levels at SLHC
~10xLHC

— Time to Annual limitat n=3is~12 h
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& STFC

W@ RAL

BACKPLATE

Layout of EE elements
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& STFC Partial endcap upgrade for SLHC?

@ RAL

At VPTs:

Dose(77 =2.2)/Dose(n =3.0) ~1/10
(neutron fluence ~1/3)

~25% (18/71) Supercrystals are at 77 >2.2

Only replace detectors at small radius ?

Very challenging because of complexity of
EE construction and high radiation levels

— Needs detailed study

\ L
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ok B8 Summary

W@ RAL

> !IEE photodetectors at small radius will be significantly degraded after 500 fb"
(Anode response — ~ 50% atn = 3.0)

» Development of ‘ruggedized’ vacuum photo-detectors appears feasible
(Interest from Brunel, RAL, UVa...... )

» A partial replacement of EE would be challenging
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