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RAL Vacuum photodetectors: present and future

Wh t d t t SLHC?• What do we expect at SLHC?
• VPT properties

A i i d l i VPT f HC• Anticipated losses in VPT performance at LHC
- Photocathode fatigue

Faceplate darkening- Faceplate darkening

• Possible future approaches
• A word of caution• A word of caution
• Summary
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RAL What do we expect at SLHC?
SLHCLHC∫L ~ 440 fb-1 ∫L ~ 3040 fb-1

Total ∫ L ~ 3500 fb-1

(107 s/year 50% efficiency)

s-1
)

(10 s/year, 50% efficiency)
(cf ECAL TDR: ∫L ~ 500 fb-1)
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RAL Dose versus η in EE (LHC)
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RAL Neutron fluence (>100keV) in EE
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RAL Fluence and Dose for 500 fb-1

500 fb-1

500 fb-1

I di t l

500 fb 1

Neutron + charged hadron fluence (cm-2) for E>100 keV Immediately 
behind crystals

500 fb-1

500 fb-1
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RAL CMS Vacuum phototriodes

Vacuum Phototriode (VPT):
Single stage photomultiplier 
tube with fine mesh grid anode

Type PMT188
National Research 
Institute Electron,

St Petersburg

• Favourable B-field orientation in EE 
(VPT Axis: 8.5o < |θ| < 25.5o wrt to B )

φ = 26.5 mm
• Active area of ~ 280 mm2/crystal

• ‘ Bialkali’ (CsK2Sb) photocathode
+ dynode coating

• Gain 8 -10 at B = 4 T
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MESH ANODE • Q.E. ~ 20% at 420 nm
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RAL Gain in a strong magnetic field 

8

10

12 B-field immunity requires a very fine anode 
mesh
→ Anode pitch =10 μm

4

6

8

G
ai

n

V(A)=1000V
V(A)=800V

Primary electrons should pass through the 
anode and strike the dynode, but secondary 
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→ Anode transparency = 50%
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RAL Response vs tilt angle 
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Effect of tilt on 
anode transparency
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RAL Phototube ageing
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~ 10 years ago, ageing tests were made 
at RAL and at Brunel on 1 inch VPTs from 
several manufacturers, at B=0 and 
B=1 8T Most tubes showed similar
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The fall in anode response is 
dominated by degradation of the

B = 0B=1.8T.  Most tubes showed similar 
behaviour. These plots are for RIE tubes.
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→ ~ 650 fb-1 at η = 2.9
→ ~ 2000 fb-1 at η = 2.5
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RAL Causes of photocathode degradation
- Positive ion bombardment
- Cs desorption
- Oxidation due to faulty metal in glass seals Not a problem with well-constructed tubes

Photocathode lifetime is often expressed 
as the ‘charge lifetime’, in Coulombs/cm2

- Electrolysis of the glass of the window
- Other

Bias with cathode at 0V (a/c couple anode)

100Measurements on an RIE tube show a
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B = 0

Measurements on an RIE tube show a 
behaviour that is well described by the sum 
of two exponential terms – indicating two 
distinct effects.
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These are sometimes termed ‘conditioning’ 
and ‘ageing’.
Assuming linear scaling to a typical EE/LHC 
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τ1 is consistent with a simple estimate of the 
time to sweep up the residual gas in the 
tube (positive ion bombardment)
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It is tempting to attribute τ2 to Cs desorption
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RAL Positive ion bombardment
V(A)

1000V
V(D)
800V

V(K)
0V

V(A)
1000V

V(D)
800V

V(K)
0V Photocathode damage caused by positive ion 

bombardment increases with ion energy.
→ Pre-condition by operating the tubes at low

e-
e-

e-
e-

→ Pre condition by operating the tubes at low 
bias for ~100d at Ik = 2nA ??
(tests are planned but note importance of gain)
(Note: in principle one could precondition the tubes

I+ I+I+ I+

(Note: in principle one could precondition  the tubes 
as diodes with V(K) = V(A) =0 and V(D) = -200V, 
using the dynode as the photocathode.  In this 
configuration all the ions would be swept on to the 
d d hi h t b l iti t

The secondary emission coefficient of the
Not to scale!!!

dynode, which appears to be less sensitive to 
damage.
However, without internal gain, this would take a 
prohibitively long time at practical levels ofThe secondary emission coefficient of the 

dynode  ~20.
→ Positive ion production is dominated by

secondary electrons -

prohibitively long time at practical levels of 
illumination.)

Note also that positive ion damage self-anneals 
to some extent when a tube is ‘rested’ fory

both in the anode-dynode gap
and the anode-cathode gap

Ions strike the cathode with <E(I+)>=900eV

to some extent when a tube is rested  for 
several months – so a pre-conditioning strategy 
would need repeating.
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Ions strike the dynode with <E(I+)>=100eV
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RAL Radiation-darkening of faceplates (n & γ )
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(η  2.6 at LHC)
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(Super radiation hard vacuum phototriodes for the CMS 
endcap ECAL, NIM A535, 2004, 511-516 Yu.I.Gusev, et al.)
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RAL ‘Ruggedizing’ vacuum photodetectors (1)
Window transparency:

Fused silica (‘quartz’) is extremely radiation hard, but requires ‘graded seals’
→ increased cost increased length increased vulnerability to He ingress→ increased cost, increased length, increased vulnerability to He ingress.

However, UV-transmitting and Ce-doped glasses with improved radiation resistance 
are now available
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Neutron fluence 7x1014 n/cm2

Accompanying γ-dose ~100 kGy
together with a γ dose of 1600 ± 250 kGy
[Yu.I. Gusev et al., NIM A 581, 438, (2007)]

Unfolding neutron damage using 
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Yu.I.Gusev et al. VCI Conf, Vienna, 2004
P.R.Hobson et al., Astroparticle, Particle 
and Space Physics, Detectors and Medical 

extrapolated 60Co data (and ignoring γs

from induced activity in the glass):
→ ΔT/T0 (neutron) < 15%
for EE η < 3 0 at SLHC
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p y ,
Physics Applications, Como, 2003

for EE η < 3.0 at SLHC
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RAL ‘Ruggedizing’ vacuum photodetectors (2)
Positive ion damage (‘conditioning’):

Improve the vacuum: for example, incorporate a getter
– tests on a single device during R&D for CMS showed a marked improvementtests on a single device during R&D for CMS showed a marked improvement.

Operate at low bias voltage
- incompatible with large internal gain → use vacuum photodiodes?

Caesium desorption:

Popular high efficiency photocathodes for visible light almost all incorporate CsPopular high efficiency photocathodes for visible light almost all incorporate Cs.

However, alternatives are available:
E.g. ‘High temperature bi-alkali’ (Na2KSb) (used in oil-well logging)

Q E ~16% at 400 nm- Q.E. ~16% at 400 nm.

EE Photodetectors for SLHC FNAL 20/1108                                  R M Brown - RAL                                        14



STFC

RAL EE replacement/upgrade??
PbWO4 → LYSO ?
λemiss ~ (380-460) nm,  LY(LYSO) ~ 200 x LY(PWO)

What photo-detector?

Silicon devices:
Neutron damage → high leakage currents → amplifier noise?Neutron damage → high leakage currents → amplifier noise?

‘Nuclear counter effect’  (for a simple photodiode, direct sensitivity to shower leakage 
particles >> sensitivity to scintillation light → high energy tail on energy measurement)

APD?

Vacuum devices:
Good match to biakali photocathode

V(A)
<100V

V(K)
0V

V(A)
<100V

V(K)
0V

- Good match to biakali photocathode
- Internal gain not necessary

→ Vacuum photodiode? e-e-

I+I+
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RAL EE Activation
150
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Estimated dose rate in μSv/h after 
60d at 〈L〉 = 5x1033cm-2s-1 and 1d 
cooling. (CMS closed)
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rates are ~2.5x lower
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Occupational dose limit: 20 mSv/yrOccupational dose limit: 20 mSv/yr
(Note: this is the legal limit, the normal CERN limit is
6 mSv/yr – except for the (very few) ‘Class A’ workers) 

Assume induced activity levels at SLHC y
~10xLHC
→ Time to Annual limit at η = 3 is ~12 h
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RAL Layout of EE elements
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RAL Partial endcap upgrade for SLHC?
At VPTs:
Dose(η =2.2)/Dose(η =3.0) ~1/10 
(neutron fluence ~1/3)(neutron fluence 1/3)
~25% (18/71) Supercrystals are at η >2.2

Only replace detectors at small radius ?Only replace detectors at small radius ?
Very challenging because of complexity of 
EE construction and high radiation levels 
→ Needs detailed study→ Needs detailed study

η
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RAL Summary

EE photodetectors at small radius will be significantly degraded after 500 fb-
1

(A d 50% t 3 0)(Anode response → ~ 50% at η = 3.0)

Development of ‘ruggedized’ vacuum photo-detectors appears feasible
(Interest from Brunel, RAL, UVa……)(Interest from Brunel, RAL, UVa……)

A partial replacement of EE would be challenging
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