

1

CHORUS search for $V\mu \rightarrow V\tau$ oscillations

In Memoriam - Engin Arik and her colleagues

Roumen Tsenov

St. Kliment Ohridski University of Sofia

ICPP, Istanbul, 27-31 October 2008

Content

- Introduction to neutrino oscillations
- Motivation of CHORUS short baseline accelerator search for $\nu_{\mu} \rightarrow \nu_{\tau}$
- Neutrino beam and CHORUS detector
- Final results

The pioneer: Ray Davis, Homestake since ~1968

Roumen Tsenov, ICPP, 27-31 O

Total Rates: Standard Model vs. Experiment

where L = distance between source and detector E = neutrino energy

The global plot

Motivation for short base-line neutrino oscillation search

(year 1993)

The question whether neutrino flavours mix at some level and the related question whether neutrinos have non-zero mass is one of the remaining great challenges of experimental high energy physics. A new search for $v_{\mu} - v_{\tau}$ oscillations has recently received incentives from the solar neutrino experiments. Combining the results of the Davis Chlorine experiment [1], the Kamiokande neutrinoelectron scattering experiment [2] and results from GALLEX [4] and SAGE (Soviet-American-Gallium-Experiment) [3], a consistent description by a MSW solution seems to be a possible explanation of the solar neutrino problem [5]. The cosmological connection between neutrino masses and the enigma of dark matter has been invoked by Harari [6]. The COBE-IRAS data scem to prefer a mixed dark matter scenario with $m_{V\tau} \sim 7 \text{ eV}$. None of these considerations is compelling; however, they suggest that $V_{\mu} - V_{\tau}$ oscillation may be within reach of a new experiment which we will perform at the CERN-SPS [7]. We shall perform the experiment in the wide band neutrino beam facility of the CERN-SPS to explore the domain of small mixing angles down to $\sin^2 2\theta_{\mu\tau} - 3 \times 10^{-4}$ for mass parameters $\Delta m^2 > 1$ eV². The region of sensitivity of this new experiment and those already explored previously are shown in figure 1. If oscillations would occur at the present limit ($\sin^2 2\theta_{\mu\tau} = 5 \times 10^{-3}$, $\Delta m^2 > 50 \text{ eV}^2$) we would observe 64 events in the proposed experiment.

CHORUS Proposal: CERN-PPE-93-131

University of Sofia

Belgium (Brussels, Louvainla-Neuve), CERN, Germany (Berlin, Münster), Israel (Haifa), Italy (Bari, Cagliari, ¹⁰ Ferrara, Naples, Rome, Salerno), Japan (Toho, Kinki, Aichi, Kobe, Nagoya, Osaka, 40[.] Utsunomiya), Korea (Gyeongsang), The Netherlands (Amsterdam), Russia (Moscow), Turkey (Adana, Ankara, Istanbul) + more later (...R. Tsenov¹⁷...)

¹⁷) On leave of absence from Sofia University, Bulgaria, with support from the Bogazici University,
 Centre for Turkish-Balkan Physics Research and Applications. (1994, 1995).

CHORUS Main objective

- + ν_{τ} appearance in the SPS WBB ν_{μ} beam via oscillation
- P($v_{\mu} \rightarrow v_{\tau}$) down to 1·10⁻⁴ for δm^2 ~10 eV²
- v_{τ} direct detection in 770 kg nuclear emulsion target Tag: visible 1- and 3- prongs decay of primary τ -lepton

(decay path ~1.5 mm)

$\mu^{-} \nu_{\tau} \overline{\nu}_{\mu}$	BR 17 %
$\mathbf{h}^{-} \mathbf{v}_{\tau} n \pi^{\circ}$	50 %
$e^{-} v_{\tau} \overline{v}_{e}$	18 %
$\pi^+ \pi^- \pi^- \nu_\tau$	<i>n</i> π° 15 %

Roumen Tsenov, ICPP, 27-31 October 2008, Istanbul

10

CERN West Area Neutrino Facility

(~0.1 background event)

West Area Neutrino Facility

SPS and WANF (v_{μ}) neutrino beam versity of Sofia

770 kg emulsion target and scintillating fibre tracker

Nucl. Instr. Meth A 412 (1998) 19

δθ~ 2 mrad, δ_{xy} ~150 μm

Roumen Tsenov, ICPP, 27-31 October 2008, Istanbul

ty of Sofia

External electronic detectors:

- sign and momentum of pions
- Hadronic and e-m shower energy and direction
- Muon momentum and id Event pre-selection and post-scanning analysis

Neutrino data-taking collection efficiency 1994-1997

Year of exposure	1994	1995	1996	1997	All
POT / 10¹⁹	0.81	1.20	1.38	1.67	5.06
Expected Ncc / 10 ³	120	200	230	290	840
Chorus efficiency	0.77	0.88	0.94	0.94	0.90
Deadtime	0.10	0.10	0.13	0.12	0.11
Good emulsion	0.97	0.73	1.00	1.00	0.93

N.B. Longest/Largest emulsion exposure ever done

Event in CHORUS

Nuclear emulsion yesterday

1947, first <u>nuclear emulsions</u>. Lattes et al., Brown et al.:

Fig. 4.8.2. Mosaic of microphotographs showing a $\pi \rightarrow \mu \rightarrow e$ decay. Kodak NT4 electron-sensitive emulsion. From Brown *et al.* (BRH49.2).

Predictions, Scanback and Vertex location

Sofia

CHORUS automatic microscopes

views/s

vear

Automatic scanning: Track Selecto

(developed in Nagoya)

emulsion

Principle:

Parent track (T) can be detected by wider view and general angle scanning at the vertex plate

Offline selection

- small impact parameter between parent and daughter
- kink point is in the vertex plate

Computer assisted eye-scan to confirm the presence of a secondary vertex

PHASE I data flow chart

Protons on target	$5.06 imes 10^{19}$
1μ : events with 1 negative muon and vertex predicted in emulsion	713,000
1μ : $p_{\mu} < 30$ GeV and angular selections	477,600
1μ : events scanned	355,395
1μ : vertex located	143,742
1μ : events selected for eye-scan	11,398
0μ with vertex predicted in emulsion (CC contamination)	335,000 (140,000)
0μ with 1 negative track ($p = 1-20$ GeV and angular selections)	122,400
0μ : events scanned	85,211
0μ : vertex located (corrected number after reprocessing)	23,206 (20,081)
0μ : events selected for eye-scan	2,282

A unique feature of emulsion: kink parent direction

• v beam

		$\operatorname{charm}(\nu + \bar{\nu})$	WK	Total	Observed	N_{τ}^{max}
1μ	$L_k < 5$ plates	0.1	-	0.1	0	5,014
	$L_k < 3$ plates	0.7	2.6	3.3	4	2,791
0μ	$(L_k(p_h))_{80\%}$	0.5	1.7	2.2	1	2,537
	$(L_k(p_h))_{80\%}$ and $\Phi_{(\tau-H)} > 90^o$	0.3	0.8	1.1	0	2,004

Result of Phase I

Phys.Lett. B 497 (2001) 8

- $P_{\mu\tau} < 3.4 \ 10^{-4}$
- **@90%** CL^[1]
- For for large $\Delta m^2 \rightarrow sin^2 2\theta_{\mu\tau} < 6.8 \ 10^{-4}$

[1] T.Junk, NIM A434 (1999) 435

A new scanning technique : scanning speed increased from 0.01 frames/sec in **1994** to 10,000 in **2000**

- Use already located events
- Pick up <u>all track segments</u> in an 8-plates deep fiducial volume around scan-back track
- Decay search is not limited to the scan-back track
- Offline analysis of emulsion data

Faster Hardware processing of images: from digitization to grain finding and data storage

After 16 images are stored: <u>PARALLEL angular scan</u> for every possible angle: HW summation by FPGA technology (Field programmable Gated Arrays) to find tracks while the microscope moves to the next position

Performance:

3 *Hz* (for all tracks with $\theta_z < 400$ mrad)

OFFLINE Emulsion Analysis

PHASE II data flow chart

Results of the reconstruction of the 0μ sample

Stage of reconstruction	Number of events
Interface emulsion scanned	102544
Vertex plate found	35039
NetScan acquisition accepted	29404
Vertex reconstructed	22661

Nucl. Phys. B 793 (2008) 326

Category	$\Delta \phi$ (rad)	Background	$N_{ au}^{\mu au}$	$N_{ au}^{{ m e} au}$	Data
$\tau \rightarrow 1\mu$ [1994–1997 data taking] $\tau \rightarrow 0\mu$ C1 [1994–1995 data taking]		0.100 ± 0.025 0.300 ± 0.075	5014 526	55.8 5.85	0 0
$\tau \rightarrow 0\mu$ C1 [1996–1997 data taking]		53.2 ± 9.0	9621	76.9	59
$\tau \rightarrow 0 \mu$ C3 [1996–1997 data taking]		47 ± 11	4443	35.5	48

СЗ

• the same $\tau \rightarrow 1\mu$ "would be seen" number of events

• 7 times more $\tau \rightarrow 0\mu$ "would be seen" number of events

$P_{\mu\tau} < 2.2 \text{x} 10^{-4}$ @90% CL $P_{e\tau} < 2.2 \text{x} 10^{-2}$

- \blacklozenge CHORUS has reached its design sensitivity on $P_{\mu\tau}$ ~10^{-4};
- Rich capabilities of a hybrid emulsion experiment for study of short lived particles, e.g. neutrino induced charm production have been demonstrated;
- Successor long base-line τ appearance experiment exploiting similar technique, OPERA, is running.