CHORUS search for $V_{\mu} \rightarrow V_{\tau}$ oscillations

> In Memoriam - Engin Arik and her colleagues

Roumen Tsenov
St. Kliment Ohridski University of Sofia

ICPP, Istanbul, 27-31 October 2008

Content

- Introduction to neutrino oscillations
- Motivation of CHORUS short baseline accelerator search for $\boldsymbol{\nu}_{\mu} \rightarrow \boldsymbol{v}_{\tau}$
- Neutrino beam and CHORUS detector
- Final results

$$
\Phi_{v}=\frac{2 L_{\mathrm{sun}}}{25 \mathrm{MeV}} \frac{1}{4 \pi(1 \mathrm{AU})^{2}}=7 \cdot 10^{10} \mathrm{sec}^{-1} \mathrm{~cm}^{-2}
$$

Total Rates: Standard Model vs. Experiment

The pioneer:

 Ray Davis, Homestake since ~1968

Roumen Tsenov, ICPP, 27-31 O

Neutrino Oscillations

University of Sofia

weak interaction produces

Energy (i.e. mass) eigenstates propagate
weak interaction: (CC)
'flavour' neutrinos
e.g. pion decay $\pi \rightarrow \mu \nu$
$\left|v_{\mu}\right\rangle=\alpha\left|v_{1}\right\rangle+$ $\beta \mid v_{2}>+$

$$
+\left.\gamma\right|_{3}>\exp \left(\mathbf{i} E_{3} \mathbf{t}\right)
$$ $\boldsymbol{\gamma}\left|v_{3}\right\rangle$

proper time $\propto L / E$

$$
\mathbf{P}(\mu \rightarrow \tau)=\rangle_{i}<\nu_{\tau}, v(\mathbf{t})>_{1}^{12}
$$

The idea raised first by Bruno Pontecorvo in 1957.

$$
\begin{aligned}
& \mid v(t)>=\alpha v_{1}>\exp \left(i E_{1} t\right) \\
& +\beta \quad v_{2}>\exp \left(\mathbf{i E} E_{2} t\right)
\end{aligned}
$$

Oscillation Probability

* The case with two neutrinos:
\rightarrow A mixing angle:
\rightarrow A mass difference:

$$
\binom{v_{\alpha}}{v_{\beta}}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{v_{1}}{v_{2}}
$$

$$
\Delta m^{2}=m_{2}^{2}-m_{1}^{2}
$$

* The oscillation probability is:

$$
P\left(v_{\alpha} \rightarrow v_{\beta}\right)=\sin ^{2} 2 \theta \sin ^{2}\left(1.27 \Delta m^{2} \frac{L}{E}\right)
$$

$\Delta \mathrm{m}^{2}$ in ev^{2} Lin km
E in $\mathbf{G e V}$
where $L=$ distance between source and detector $E=$ neutrino energy

University of Sofia

The global plot

University of Sofia

Motivation for short base-line neutrino oscillation search

(year 1993)

The question whether neutrino flavours mix at some level and the related question whether neutrinos have non-zero mass is one of the remaining great challenges of experimental high energy physics. A new search for $v_{\mu}-v_{\tau}$ oscillations has recently received incentives from the solar neutrino experiments. Combining the results of the Davis Chlorine experiment [1], the Kamiokande neutrinoelectron scattering experiment [2] and results from GALLEX [4] and SAGE (Soviet-American-GalliumExperiment) [3], a consistent description by a MSW solution seems to be a possible explanation of the solar neutrino problem [5]. The cosmological connection between neutrino masses and the enigma of dark matter has been invoked by Harari [6]. The COBE-RAS data secm to prefer a mixed dark matter scenario with $\mathrm{m}_{\nu_{\tau}} \sim 7 \mathrm{eV}$. None of these considerations is compelling; however, they suggest that $\nu_{\mu}-V_{\tau}$ oscillation may be within reach of a new experiment which we will perform at the CERN-SPS [7]. We shall perform the experiment in the wide band neutrino beam facility of the CERN-SPS to explore the domain of small mixing angles down to $\sin ^{2} 2 \theta_{\mu \tau} \sim 3 \times 10^{-4}$ for mass parameters $\Delta \mathrm{m}^{2}>1$ eV^{2}. The region of sensitivity of this new experiment and those already explored previously are shown in figure 1. If oscillations would occur at the present limit $\left(\sin ^{2} 2 \theta_{\mu \tau}=5 \times 10^{-3}, \Delta \mathrm{~m}^{2}>50 \mathrm{eV}^{2}\right)$ we would observe 64 events in the proposed experiment.

Collaboration

University of Sofia
Belgium (Brussels, Louvain-la-Neuve), CERN, Germany (Berlin, Münster), Israel (Haifa), Italy (Bari, Cagliari, so Ferrara, Naples, Rome, Salerno), Japan (Toho, Kinki, Aichi, Kobe, Nagoya, Osaka, Utsunomiya), Korea (Gyeongsang), The Netherlands (Amsterdam), Russia (Moscow), Turkey (Adana, Ankara, Istanbul) + more later (...R. Tsenov ${ }^{17} . .$.)
${ }^{17}$) On leave of absence from Sofia University, Bulgaria, with support from the Bogazici University,
Centre for Turkish-Balkan Physics Research and Applications. (1994, 1995).

CHORUS Main objective

- v_{τ} appearance in the SPS WBB v_{μ} beam via oscillation
- $P\left(v_{\mu} \rightarrow v_{\tau}\right)$ down to $1 \cdot 10^{-4}$ for $\delta m^{2} \sim 10 \mathrm{eV}^{2}$
- v_{τ} direct detection in 770 kg nuclear emulsion target

Tag: visible 1- and 3-prongs
decay of primary τ-lepton (decay path $\sim 1.5 \mathrm{~mm}$)

$\mu^{-} V_{\tau} \bar{V}_{\mu}$	BR 17%
$h^{-} V_{\tau} \quad{ }^{n} \pi^{\circ}$	50%
$\mathbf{e}^{-} V_{\tau} \bar{V}_{e}$	18%
$\pi^{+} \pi^{-} \pi^{-} V_{\tau}$	$n \pi^{o}$
π°	15%

CERN West Area Neutrino Facilifity ${ }^{\text {mosast }}$ CERN West Area Neutrino Facility

$\langle L\rangle \sim 0.6 \mathrm{~km} ; \delta L(\mathrm{rms}) / \mathrm{L} \sim 0.2$

- $W B B,<E_{v_{\mu}}{ }^{2}=26.6 \mathrm{GeV}$
- ~5.10 19protons on target
- ~840K V_{μ} CC in CHORUS
- $v_{\tau} C C / v_{\mu} C C \sim 3.10^{-6}$
(~0.1 background event)

SPS and WANF $\left(v_{\mu}\right)$ neutrino beammorosist

770 kg emulsion target and scintillating fibre tracker

Scintillating fibre trackers

Nucl. Instr. Meth A 412 (1998) 19
$\delta \theta \sim 2 \mathrm{mrad}, \delta_{x y} \sim 150 \mu \mathrm{~m}$

Roumen Tsenov, ICPP, 27-31 October 2008, Istanbul

External electronic detectors:

- sign and momentum of pions
- Hadronic and e-m shower energy and direction
- Muon momentum and id

Event pre-selection and post-scanning analysis

Neutrino data-taking collection efficiency 1994-1997

Year of exposure	1994	1995	1996	1997	All
POT / 10					
Expected Ncc / 10	$\mathbf{3}$	$\mathbf{1 2 0}$	$\mathbf{1 . 2 0}$	$\mathbf{1 . 3 8}$	1.67
	$\mathbf{2 0 0}$	$\mathbf{2 3 0}$	$\mathbf{2 9 0}$	$\mathbf{8 4 0}$	
Chorus efficiency	$\mathbf{0 . 7 7}$	$\mathbf{0 . 8 8}$	$\mathbf{0 . 9 4}$	$\mathbf{0 . 9 4}$	0.90
Deadtime	$\mathbf{0 . 1 0}$	$\mathbf{0 . 1 0}$	$\mathbf{0 . 1 3}$	$\mathbf{0 . 1 2}$	0.11
Good emulsion	$\mathbf{0 . 9 7}$	$\mathbf{0 . 7 3}$	$\mathbf{1 . 0 0}$	$\mathbf{1 . 0 0}$	0.93

N.B. Longest/Largest emulsion exposure ever done

Event in CHORUS

Nuclear emulsion yesterday

1947, first nuclear emulsions. Lattes et al., Brown et al.:

Fig. 4.8.2. Mosaic of microphotographs showing a $\pi \rightarrow \mu \rightarrow e$ decay. Kodak NT4 electron-sensitive emulsion. From Brown et al. (BRH49.2).

CHORUS emulsion plate

Target = 4 stacks (1.491.4 m²) 1 stack $=36$ plates

MIP : $30 \sim 40$ grains / $100 \mu \mathrm{~m}$

- Grain size ~ $0.3 \mu \mathrm{~m}$
- Angular resolution ~ 1.5 mrad

Decay search

CHORUS automatic microscopes

Automatic scanning: Track Selectormmorsist

AUTOMATIC SCANNING: The Track Selector (TS)

τ - kink detection (parent search)

Principle:

Parent track (τ) can be detected by wider view and general angle scanning at the vertex plate

Offline selection

- small impact parameter between parent and daughter
- kink point is in the vertex plate

Backgrounds

- $\tau^{-} \rightarrow \mathrm{h} \mathrm{n}\left(\pi^{0}\right) \nu_{\tau}{ }^{v N} \rightarrow \mu \mathrm{D}^{+\mathrm{X}}$

$$
\stackrel{\nu \mathrm{N} \rightarrow \mathrm{~h}^{-\mathrm{X}}}{\longrightarrow} \quad \begin{gathered}
\text { h scattering without } \\
\text { visible recoil or nuclear }
\end{gathered} \approx 10^{-5} \mathrm{~N}_{1 \mu}
$$

Charm production and missed $\mu \quad \approx 10^{-6} \mathrm{~N}_{1 \mu}$

- $\tau^{-} \rightarrow \mu^{-} \bar{v}_{\mu} v_{\tau}$

$$
\stackrel{\mathrm{vN} \rightarrow \mathrm{v} \mathrm{~h}^{-\mathrm{X}} \mathrm{X}}{\longrightarrow \mathrm{~h}^{-} \mathrm{N} \rightarrow \mathrm{~h}^{-} \mathrm{N}}
$$

Charm production and missed μ $\approx 10^{-6} \mathrm{~N}_{1 \mu}$
white kink and wrong μ id
$\approx 10^{-6} \mathrm{~N}_{1 \mu}$

Computer assisted eye-scan

to confirm the presence of a secondary vertex

Low momentum
$B G$ track

Parent $=$ daughter
no angle difference (distortion)

Backward going track:
nuclear fragment

Hadron 2ry interaction

Decay (kink)

PHASE I data flow chart

Protons on target	5.06×10^{19}
1μ : events with 1 negative muon and vertex predicted in emulsion	713,000
$1 \mu: p_{\mu}<30 \mathrm{GeV}$ and angular selections	477,600
1μ : events scanned	355,395
1μ : vertex located	143,742
1μ : events selected for eye-scan	11,398
0μ with vertex predicted in emulsion (CC contamination)	$335,000(140,000)$
0μ with 1 negative track $(p=1-20 \mathrm{GeV}$ and angular selections)	122,400
0μ : events scanned	85,211
0μ : vertex located (corrected number after reprocessing $)$	$23,206(20,081)$
0μ : events selected for eye-scan	2,282

How to reduce the background or confirm a candidate

A unique feature of emulsion: kink parent direction

Signal: τ^{-}

Backgrounds

- v beam

Limit Computation

$$
P_{\mu \tau}=\frac{N_{\tau}}{\sum_{i\{\{1 \mu, 0 \mu\}} B R_{i} \cdot N_{i}\left(\frac{\sigma_{\tau}^{C C}}{\sigma_{\mu}^{C C}} \cdot \frac{A_{i}^{\tau}}{A_{i}^{\mu}} \cdot \varepsilon_{i}^{\mathrm{kink}}\right)}
$$

$$
P_{\mu \tau}=\sin ^{2} 2 \theta_{\mu \tau} \cdot \sin ^{2}\left(\frac{1.27 \cdot \Delta m_{\mu \tau}^{2} \cdot L}{E}\right)
$$

$$
P_{\mu \tau} \leq \frac{N_{\tau}}{\left(N_{\tau}^{\max }\right)_{1 \mu}+\left(N_{\tau}^{\max }\right)_{0 \mu}}
$$

$$
\sigma_{\tau}^{\infty C} / \sigma_{\mu}^{\infty C} \quad N_{1 \mu} \quad\left\langle A_{1 \mu}^{\tau} / A_{1 \mu}^{\mu}\right\rangle \quad e_{1 \mu}^{\mathrm{kink}} \quad N_{0 \mu} \quad\left\langle A_{o_{u}}^{\tau} / A_{0_{\mu}}^{\mu}\right\rangle \quad e_{0_{\mu}}^{\mathrm{kink}}
$$

$$
\begin{array}{lllllll}
0.53 & 143,742 & 0.97 & 0.39 & 20,081 & 2.3 & 0.13
\end{array}
$$

		$\operatorname{charm}(\nu+\bar{\nu})$	WK	Total	Observed	$N_{\tau}^{\max }$
1μ	$L_{k}<5$ plates	0.1	-	0.1	0	5,014
0μ	$L_{k}<3$ plates	0.7	2.6	3.3	4	2,791
	$\left(L_{k}\left(p_{h}\right)\right)_{80 \%}$	0.5	1.7	2.2	1	2,537
	$\left(L_{k}\left(p_{h}\right)\right)_{80 \%}$ and $\Phi_{(\tau-H)}>90^{\circ}$	0.3	0.8	1.1	0	2,004

Result of Phase I

Phys.Lett. B 497 (2001) 8

- $\mathbf{P}_{\mu \tau}<3.410^{-4}$
- @ 90\% CL ${ }^{[1]}$
- For for large $\Delta \mathrm{m}^{2} \rightarrow$ $\sin ^{2} 2 \theta_{\mu \tau}<6.810^{-4}$

CHORUS Phase II : Netscan mmandsasm

A new scanning technique : scanning speed increased from 0.01 frames $/ \mathrm{sec}$ in 1994 to 10,000 in 2000

- Use already located events
- Pick up all track segments in an 8-plates deep fiducial volume around scan-back track
- Decay search is not limited to the scan-back track
- Offline analysis of emulsion data

Ultra Track Selector (HW basedrforosise

Faster Hardware processing of images: from digitization to grain finding and data storage

After 16 images are stored: PARALLEL angular scan for every possible angle: HW summation by FPGA technology (Field programmable Gated Arrays) to find tracks while the microscope moves to the next position

Performance:

3 Hz (for all tracks with $\theta_{z}<400 \mathrm{mrad}$)

OFFLINE Emulsion Analysis

All track segments

1) Reduction of $\sim 10 \mathrm{~K}$ track segments (each event, a "two-years" history!) by use of emulsion+electronic data

AND

2) Subsequent Physics analysis

≥ 2 segments connected

PHASE II data flow chart

Results of the reconstruction of the 0μ sample

Stage of reconstruction	Number of events
Interface emulsion scanned	102544
Vertex plate found	35039
NetScan acquisition accepted	29404
Vertex reconstructed	22661

Final Results

Nucl. Phys. B 793 (2008) 326

Category	$\Delta \phi(\mathrm{rad})$	Background	$N_{\tau}^{\mu \tau}$	$N_{\tau}^{\mathrm{e} \tau}$
$\tau \rightarrow 1 \mu[1994-1997$ data taking $]$		0.100 ± 0.025	5014	55.8
$\tau \rightarrow 0 \mu \mathrm{C} 1$ [1994-1995 data taking]	0.300 ± 0.075	526	5.85	0
$\tau \rightarrow 0 \mu \mathrm{C} 1$ [1996-1997 data taking]	53.2 ± 9.0	9621	76.9	59
$\tau \rightarrow 0 \mu \mathrm{C} 3[1996-1997$ data taking]	47 ± 11	4443	35.5	48

- the same $\tau \rightarrow 1 \mu$ "would be seen" number of events
- 7 times more $\tau \rightarrow 0 \mu$ "would be seen" number of events

$$
\mathbf{P}_{\mu \tau}<2.2 \times 10^{-4} @ 90 \% \mathrm{CL} \mathbf{P}_{\mathrm{e} \tau}<2.2 \times 10^{-2}
$$

Conclusions

- CHORUS has reached its design sensitivity on $\mathbf{P}_{\mu \tau} \sim 10^{-4}$;
- Rich capabilities of a hybrid emulsion experiment for study of short lived particles, e.g. neutrino induced charm production have been demonstrated;
- Successor long base-line τ appearance experiment exploiting similar technique, OPERA, is running.

