production measurements with

LConference on Particle Physics

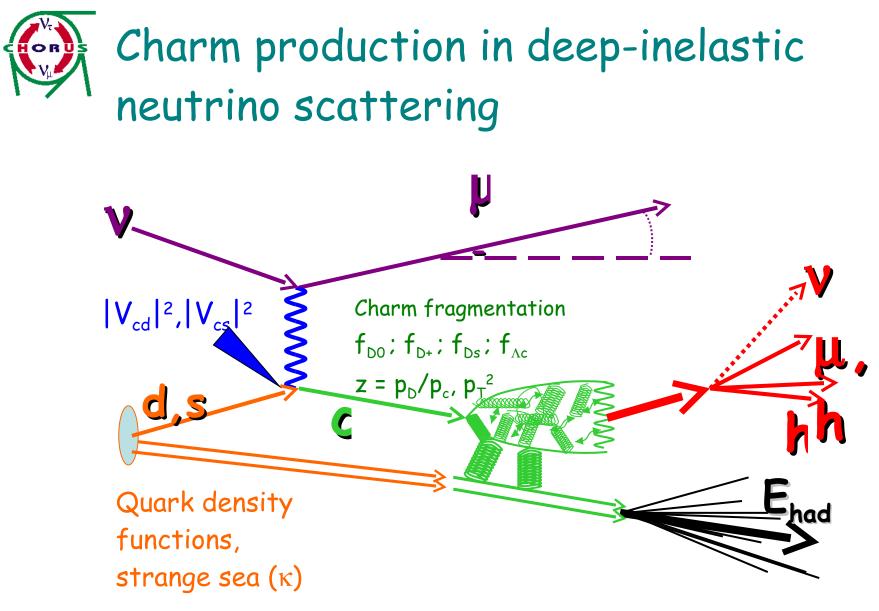
CHORDA

In Memoriam

Engin Arik and her colleagues

Jaap Panman, CERN Istanbul 2008

CHORUS experiment


(CERN Hybrid Oscillation Research ApparatUS)

Designed to search for neutrino oscillation by identification of tau decays in an emulsion target (see talk of Prof. Tsenov)

Charm decays have a similar signature This talk summarizes the charm physics results of CHORUS

Jaap Panman ICPP Istanbul 2008

......

Production from down quarks Cabibbo-suppressed \Rightarrow large s contribution: \approx 50% in v and \approx 90% in anti-v Jaap Panman ICPP Istanbul 2008

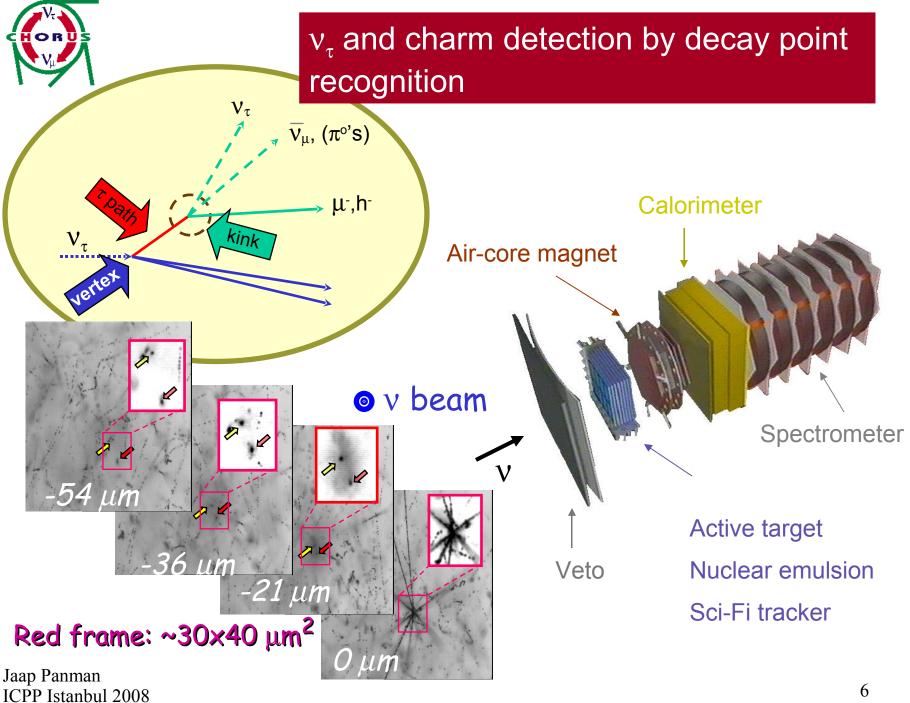
Interest in charm production

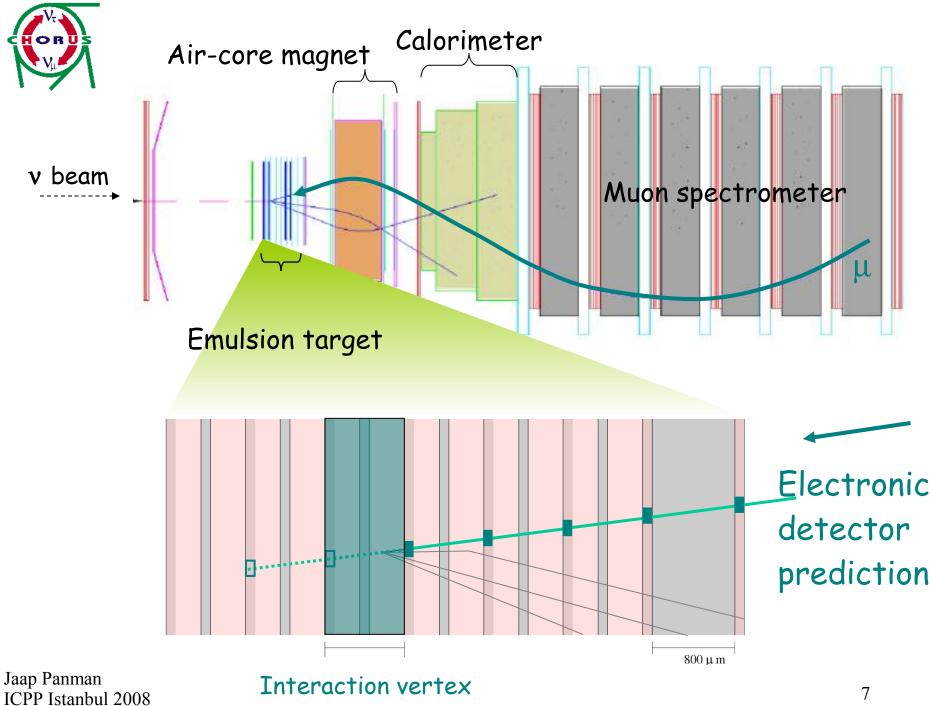
production in neutrino scattering

Strange content of the nucleon Charm mass and V_{cd} Constrain/study charm production models fragmentation: particle production ratios and distributions

charm decays

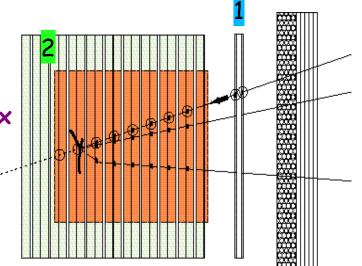

Fully inclusive measurements possible


study backgrounds for future high precision oscillation experiments (wrong sign muons, decays)

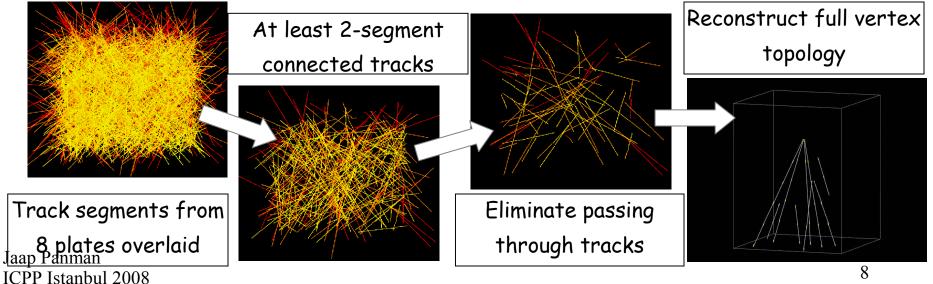


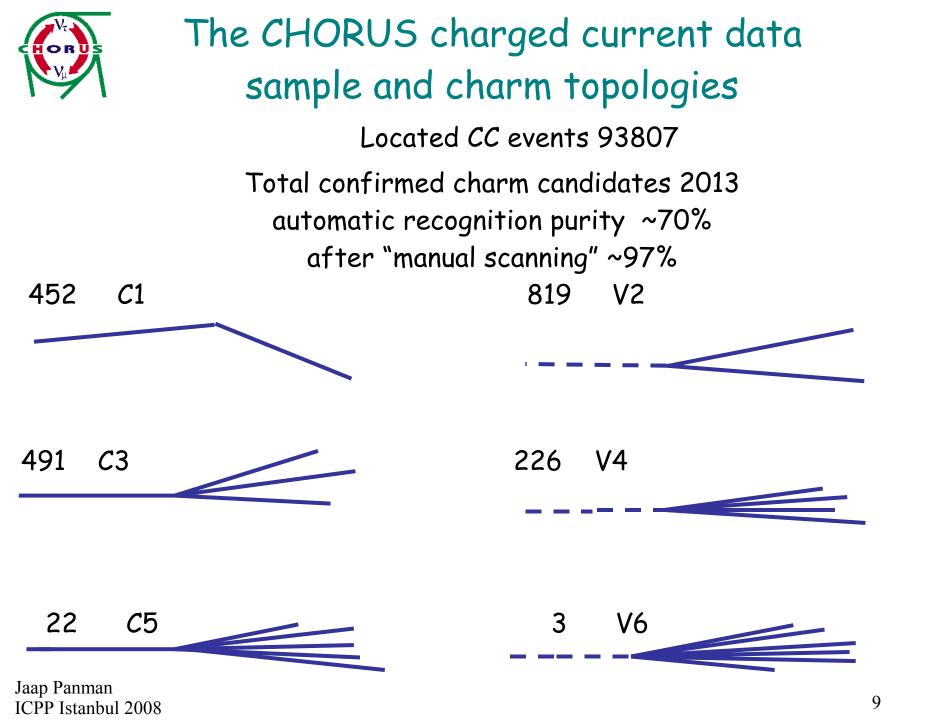
Neutrino beam

West Area Neutrino Facility at CERN SPS



Automatic emulsion data acquisition

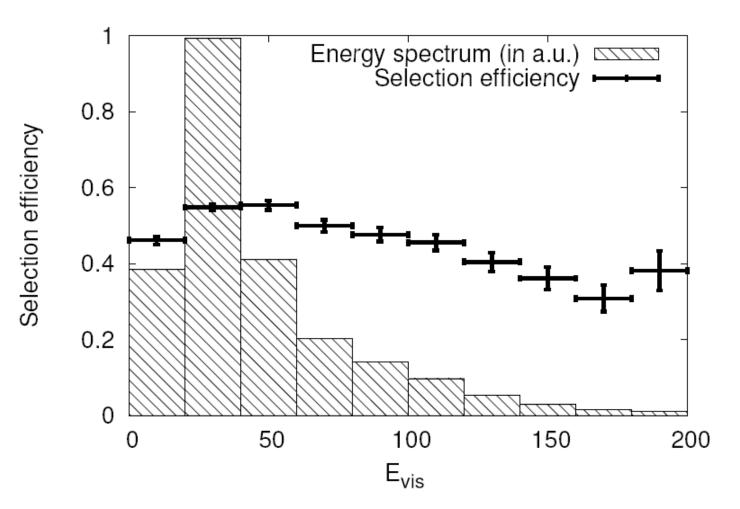

- Location of v interaction vertex guided by electronic detector.
- ² Full data taking around v interaction vertex


called NetScan

Volume : 1.5 x 1.5 mm² x 6.3 mm Angular acceptance : 400 mrad ~ 11 minutes / event

Off-line tracking and vertex reconstruction

CHORUS


charm measurements

- Neutral D meson production cross-section and decays unique signature for D^{o} $\mathsf{D}^{\mathsf{*}}$ production
- Charged charmed particles: Λ_c^+ , D^+ , D_s^+ need to be separated
 - $\Lambda_c^{*} {\rm production}, {\rm QE} {\rm charmed \ baryon \ production}, {\rm full \ separation}$
- Total charm production cross-section
- Anti-neutrino data total production cross-section
- Effective branching ratio into muons
- Fragmentation
- Interactions in the calorimeter:
 - di-muon data
 - tri-muon data

Emulsions again: Associated charm production

Efficiency down to low energies

Measurement of D° production

Phys. Lett. B 527 (2002) 173, based on ~25% of statistics *Phys. Lett. B 613 (2005) 105,* full statistics

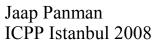
Candidate selection

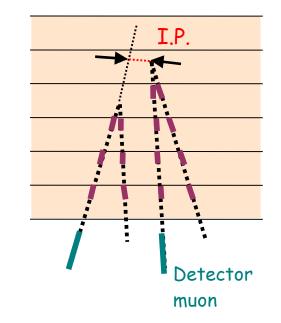
Primary track matched to detector muon

Daughter track matched to detector track

 $3 \sim 13 \ \mu m < \ I.P. \ wrt. 1ry vtx < 400 \ \mu m$ Confirmed D^osample

> 2 prong (V2) 819 (background: 35) 4 prong (V4) 226 (no background)


Selection efficiencies


V2 : $56.1 \pm 1.8 \times 10^{-2}$ V4 : $75.4 \pm 2.7 \times 10^{-2}$

Background small

V2: 36 from neutral strange particles

V4: no background

Fully neutral D^o decay modes "VO":

Measured:	$B(D^0 \rightarrow V4)/B(D^0 \rightarrow V2) = 0.207 \pm 0.016 \pm 0.004$
From PDG:	$B(D^0 \rightarrow V4) = 0.1339 \pm 0.0061$ [18]

Obtained by summing all known 4-prong modes which are complete

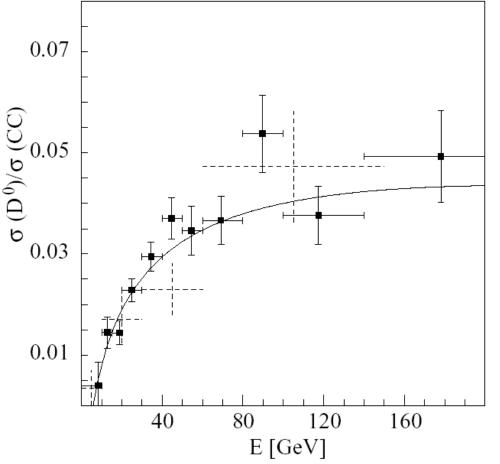
This allows us to convert ratios into absolute numbers!

6 prong small: $B(D^0 \rightarrow V6) = (1.2^{+1.3}_{-0.9} \pm 0.2) \times 10^{-3}$

 $BR(D^{\circ} \rightarrow neutrals)$:

$$B(\mathbf{D}^0 \to \mathbf{V}0) = 1 - B(\mathbf{D}^0 \to \mathbf{V}4)\left[1 + \frac{B(\mathbf{D}^0 \to \mathbf{V}2)}{B(\mathbf{D}^0 \to \mathbf{V}4)} + \frac{B(\mathbf{D}^0 \to \mathbf{V}6)}{B(\mathbf{D}^0 \to \mathbf{V}4)}\right]$$

 $B(D^0 \rightarrow V0) = 0.218 \pm 0.049 \pm 0.036$


While only 5% is measured in exclusive channels (PDG)

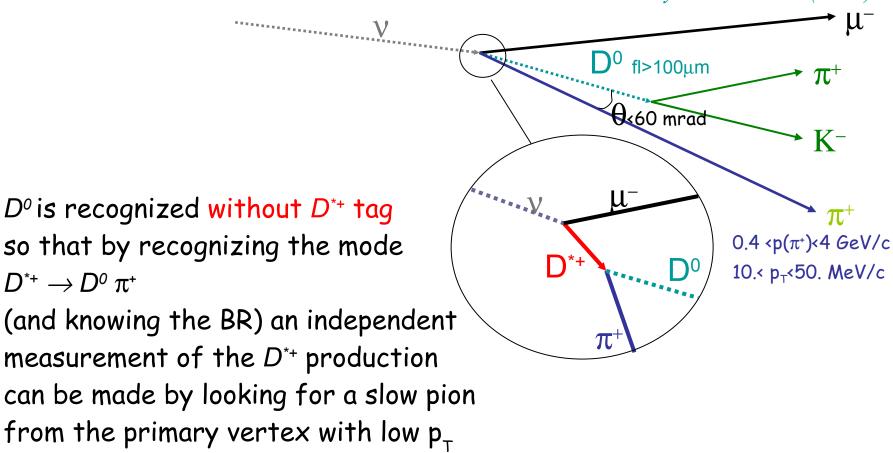
This knowledge allows us to measure total production cross-sections Jaap Panman ICPP Istanbul 2008

Total D^o production cross section:

All D°'s = N_{v4}/BR4 $\sigma(D^0)/\sigma(CC) = 0.0269 \pm 0.0018 \pm 0.0013$ 27 GeV average E For energy dependence use all decay modes, normalized to the V4

Threshold behaviour is sensitive to effective charm mass:

Variables	Value	Variation
$m_{ m c}$	$(1.42 \pm 0.08) \text{ GeV}/c^2$	fitted
κ	0.38	± 0.10
α	1	± 1
$\epsilon_{\rm p}^{\rm s}$	$0.083 \pm 0.013 \pm 0.010$	± 0.02
$rac{\epsilon_{ m p}^{ m s}}{V_{ m cd}}$	0.221	fixed
$V_{\rm cs}$	0.97437	fixed


(ϵ^{s}_{p} as measured in CHORUS, see later)

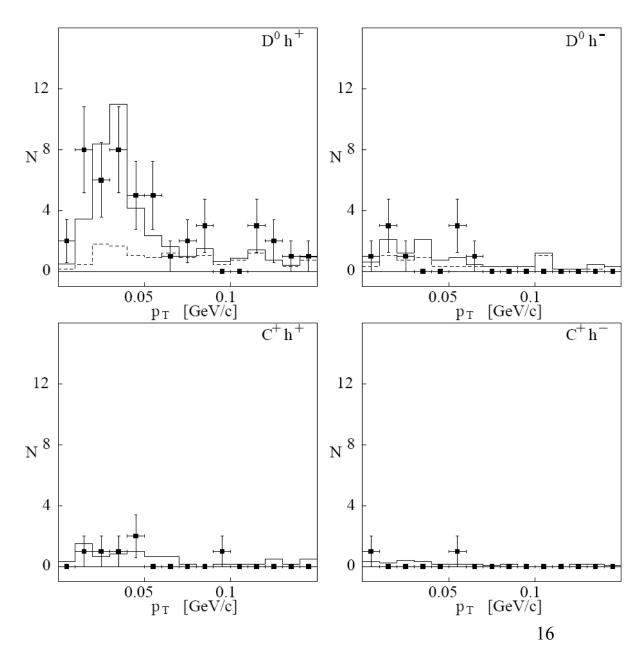
Jaap Panman ICPP Istanbul 2008

Measurement of D^{*+} production in CC v-N scattering

Phys. Lett. B 614 (2005) 155

w.r.t. the D°

p_{T} w.r.t. the D^{o} of slow pion from the primary vertex


 $D^{*+} \rightarrow D^{o} \pi^{+}$ signal only expected for positive pions "near" neutral charm decays

nothing seen for negative pions (no D^{*-} in neutrino interactions) Also not near charged charm

27 events in signal region with 5 events background

Jaap Panman ICPP Istanbul 2008

D*+ production

D*+ production results

Assuming $B(D^{*+} \rightarrow D^{\circ} \pi^{+})=0.677\pm0.005 (PDG)$ the relative rate is: $\sigma(D^{*+})/\sigma(D^{\circ})=0.38\pm0.09(\text{stat})\pm0.05(\text{syst})$

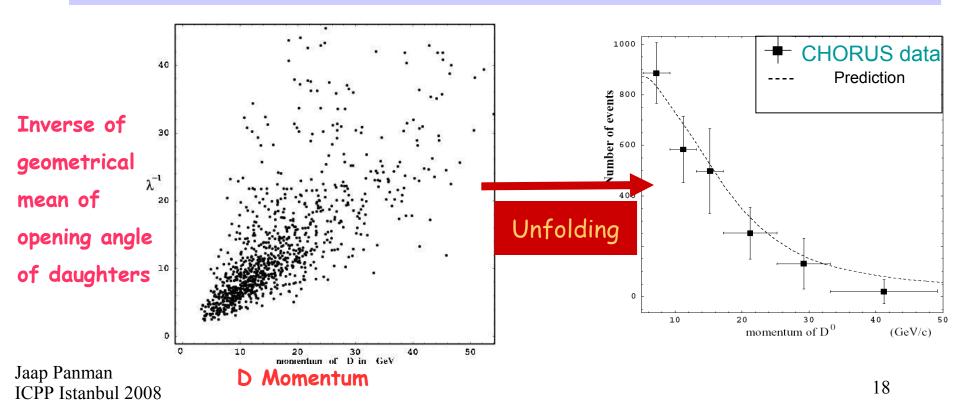
By using the measurement of $\sigma(D^{\circ})/\sigma(CC)$ made in CHORUS:

 $\sigma(D^{*+})/\sigma(CC)=(1.02 \pm 0.25(stat) \pm 0.15 (syst))\%$

(Assuming production of D^{*+} and D^{*0} equal) Fraction of all D^0 produced through D^*

 $\sigma(D^* \rightarrow D^0) / \sigma(D^0) = 0.63 \pm 0.17$

Fraction consistent with naive ³/₄ expectation for V/(P+V)



fragmentation

Phys. Lett. B 604 (2004) 145

A pure sample of D^o events is obtained using neutral particle decays. Thus using the neutrals, avoid complications of different particle types. D^o produced by DIS processes. Need to measure momenta of the DI (low efficiency)

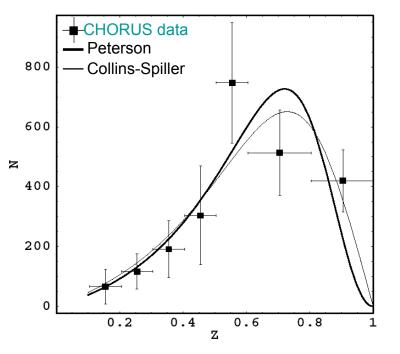
Use decay angle measurements (precise and always available)

V_t V_µ

Factorization of production and fragmentation

$$\frac{d^{4}\sigma(\nu_{\mu}N \to \mu^{-}CX)}{d\xi dy dz dp_{T}^{2}} = \frac{d^{2}\sigma(\nu_{\mu}N \to \mu^{-}cX)}{d\xi dy} \times \underline{\sum_{h} f_{h}} \times D_{c}^{h}(z, p_{T}^{2})$$

Z defined as the ratio of the energy of the charmed particle E^{D} and the energy transfer to the hadronic system $v : z = E^{D} / v$

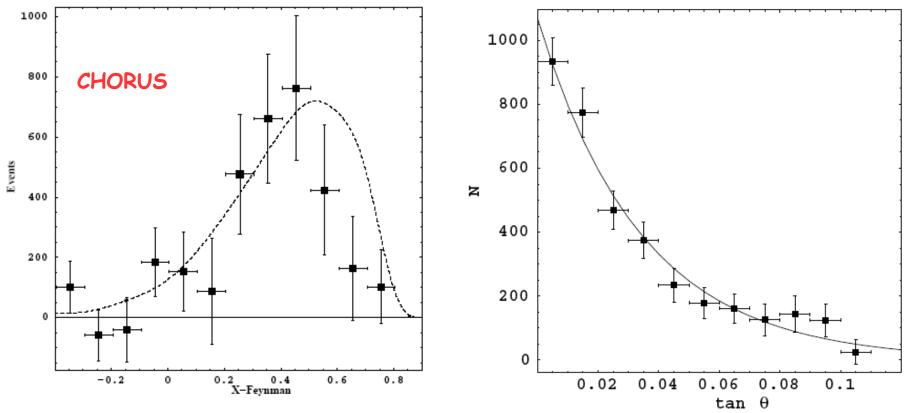

Fit to Collins-Spiller distribution:

 $\varepsilon_{cs} = 0.21 \stackrel{+0.05}{_{-0.04}\pm} 0.04$ Fit to Peterson distribution:

 $\epsilon_{\rm P} = 0.083 \pm 0.013 \pm 0.010$

$$D_c(z) = N\Big(\frac{1-z}{z} + \frac{\epsilon_c(2-z)}{1-z}\Big) (1+z^2)\Big(1-\frac{1}{z} - \frac{\epsilon_c}{1-z}\Big)^{-2}$$

$$D_p(z) = \frac{N}{z(1 - 1/z - \epsilon_p/(1 - z))^2}$$



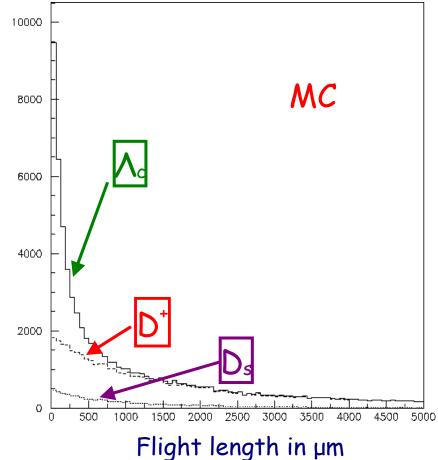
Feynman x and PT distribution

Most charmed particles are produced in the forward region

PT not so precise: use angle theta "out of the lepton plane" as transverse variable:

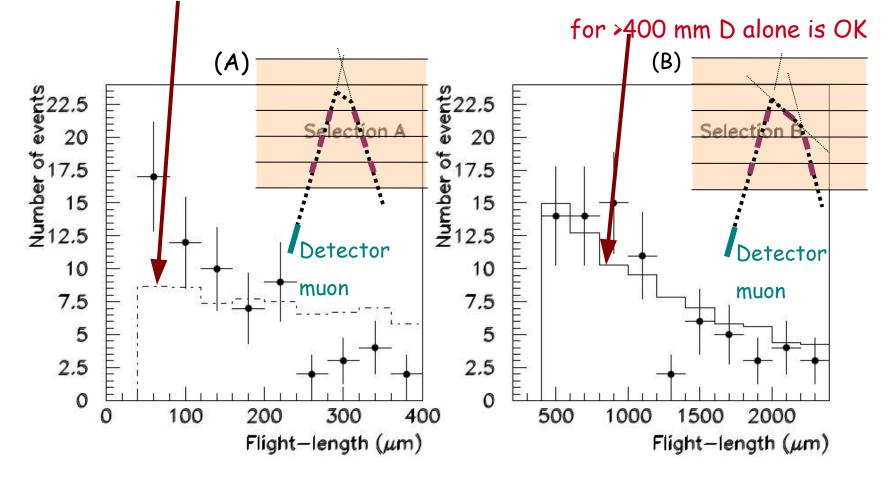
Jaap Panman ICPP Istanbul 2008

Strategy


Measurement of Λ_c production

Phys. Lett. B 555 (2003) 156

A statistical approach using flight length distribution


Two different sets of criteria have been adopted:

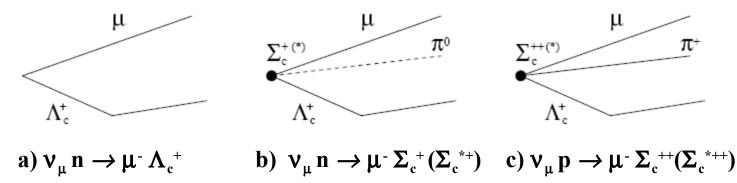
Short flight decay : Λ_c enriched sample Long flight decay : D^+ , D_s dominant

Λ_c production

D-mesons alone cannot explain distribution at small flight length

σ (Ac) /σ(CC)= (1.54 ± 0.35(stat) ± 0.18 (syst)) %

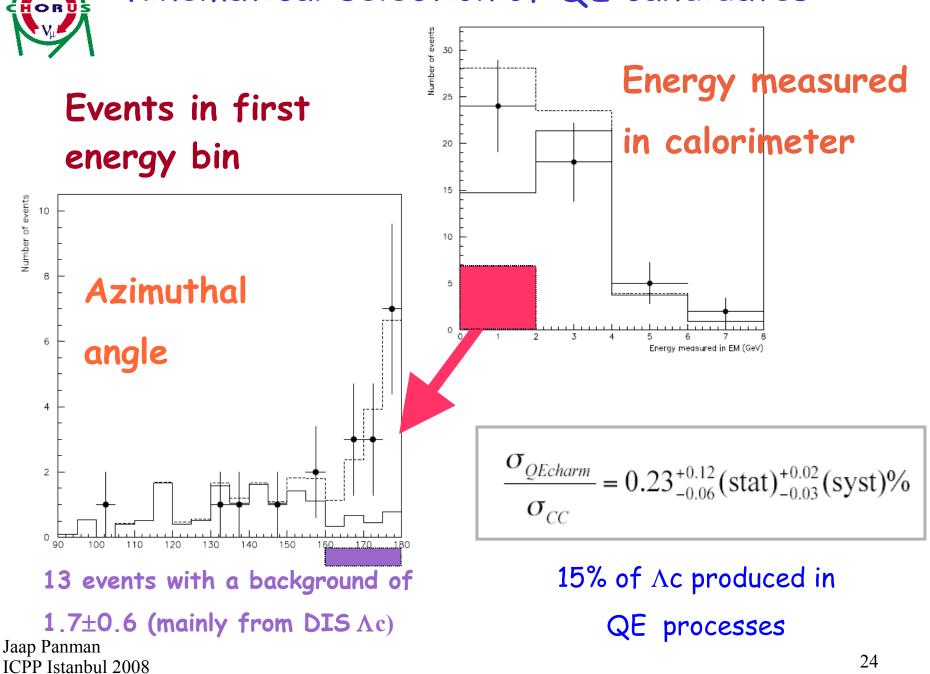
Jaap Panman ICPP Istanbul 2008


OR U Vu

Quasi-elastic production

Phys. Lett. B 575 (2003) 198

Quasi-elastic charmed baryon production topologies



Topological and kinematical selection criteria:

- 2 or 3 tracks at primary vertex
- Flight length < 200 μ m (enriches Λ c sample)

Calorimeter energy < 10 GeV and electromagnetic energy < 2 GeV $\Phi \ge 165^{\circ}$ (angle between muon and charm in the transverse plane) Jaap Panman ICPP Istanbul 2008

Kinematical selection of QE candidates

Total charm production cross-section

Need now to measure charged AND neutral charmed particles More difficult for charged charm than neutral charm because: efficiencies for different charmed hadrons are different important to know the production fractions first

efficiencies also depend on decay topology:

	$\Lambda^+_{ m c}$	D^+	$\rm D_s^+$
$C^+ \rightarrow 1p \ (\%)$	17.1 ± 1.3	21.7 ± 0.9	23.9 ± 1.2
$C^+ \rightarrow 3p \ (\%)$	40.8 ± 1.6	49.0 ± 1.2	57.7 ± 1.4
$C^+ \rightarrow 5p \ (\%)$	44.2 ± 5.2	52.7 ± 6.5	57.3 ± 3.4
$\epsilon_{3p}/\epsilon_{1p}$	2.3 ± 0.2	2.3 ± 0.1	2.4 ± 0.1

Separate types by life-time – needed to distinguish D^+ from D_s^+ use decay-angle as momentum estimator (Ac analysis used flight length alone)

Charmed fractions and inclusive topological branching ratios

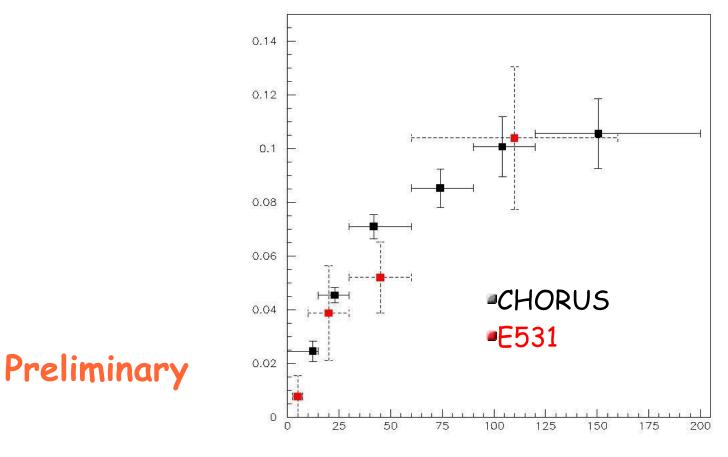
$$\mathbf{F}_{D0} = (45.7 \pm 3.1)\%$$
 from D^0 analysis

$$f_{D^+} = (24.5 \pm 3.8)\%$$

$$f_{Ds+} = (11.3 \pm 4.7)\%$$

$$f_{Ac+} = (18.5 \pm 3.6)\%$$

Likelihood fit to life-time distribution to obtain the charm production fractions


BR(C⁺ \rightarrow 1 prong) =(64.7 ± 6.4)% BR(C⁺ \rightarrow 3 prong) =(34.3 ± 3.5)% BR(C⁺ \rightarrow 5 prong) =(1.0±0.2) %

Preliminary

numbers!

Inclusive charm production Energy dependence (neutrinos)

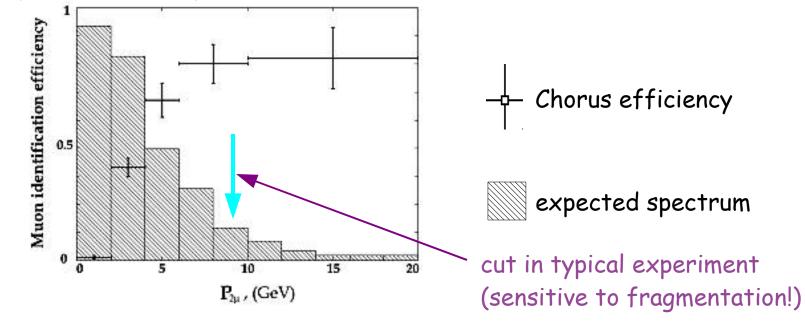
 σ (Charm)/ σ (CC)=(5.9±0.4)%

At 27 GeV average neutrino beam

Charm production in anti-neutrino interactions

Phys. Lett. B 604 (2004) 11

Similar analysis for anti-neutrino interactions Statistics much lower - used anti-neutrino contamination in the beam (tagging by positive muon) 32 charm events in total



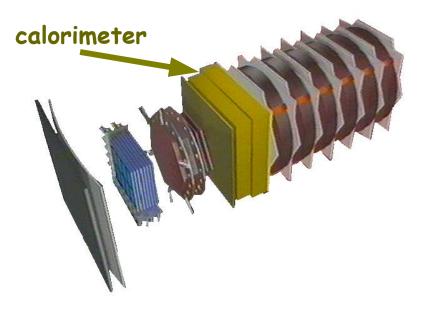
Muonic branching ratio of charmed particles

Phys. Lett. B 549 (2002) 48, based on ~25% of statistics *Phys. Lett. B 626 (2005) 24,* full statistics

Measurements of charm production in neutrino interactions with electronic detectors use di-muon events to tag charm CHORUS can identify charm independently of the muon and then look if any of the daughter particles is a muon Direct measurement of muonic branching ratio B_{μ} Difficulty is soft muon spectrum

Results for $B_{\!\mu}$

Sample of recognized muons in charm decays by topology


Number of prongs	Selected	Background	$\varepsilon^{\mathrm{id}}_{\mu},\%$	$\overline{B_{\mu}}$ (%)
C1	20	0.8	36.0 ± 3.4	$10.8 \pm 2.4 \pm 0.5$
V2	34	9.8	34.5 ± 1.9	$8.3\pm1.4\pm0.4$
C3	17	8.4	26.4 ± 2.6	$6.1\pm1.6\pm0.6$
C1+C3	37	9.2	31.7 ± 3.1	$8.6\pm1.4\pm0.4$
V2+V4	36	9.8	30.1 ± 1.5	$8.1\pm1.5\pm0.3$
Inclusive	73	19.0	30.4 ± 2.1	$7.3\pm0.7\pm0.2$
B _μ (All Charm)= (7.3±0.8(stat))%			10 - 8 -	
For the D^0 the B_{μ} can be readily obtained (take into account VO):			(%) ⁿ ^m ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹	
B _μ (D°)= (6.5±	1.2 (stat))%	0	20 40 60 80 100 120 140 E _{vis} (GeV) nergy dependence

Di-muons in the calorimeter

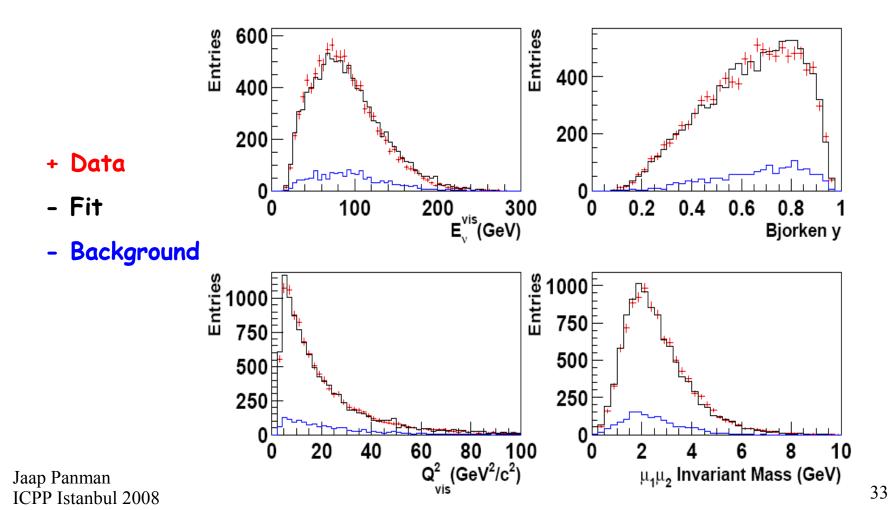
Nucl. Phys. B 798 (2008) 1

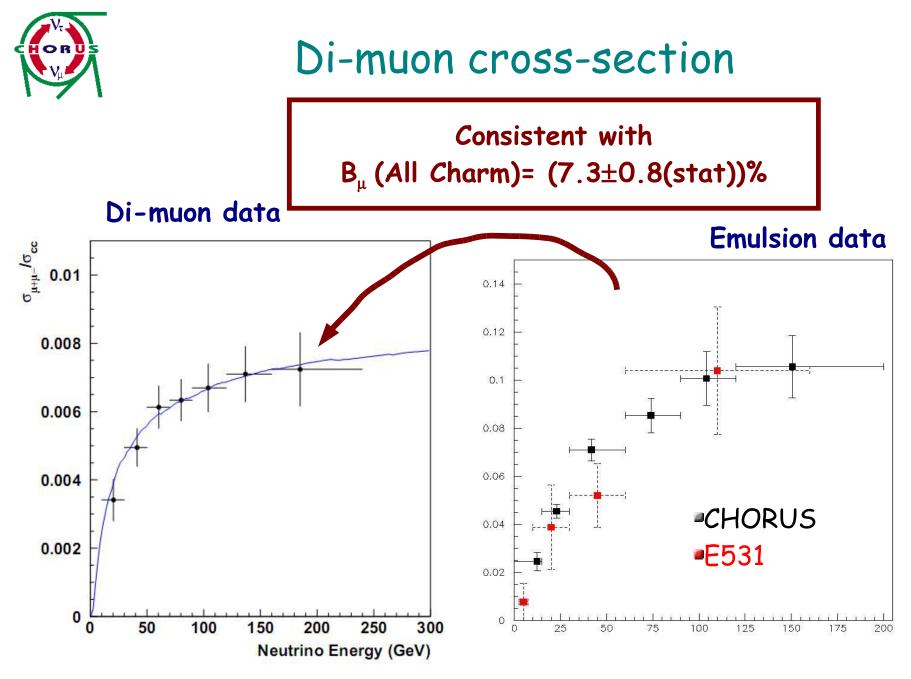
- CHORUS triggered also on interactions in the calorimeter
- For charm physics the di-muon and tri-muon analysis are relevant
- Trigger on >=2 tracks in the calorimeter or spectrometer
- Analysis requires two muons with momentum and charge measured in the spectrometer
- Higher statistics than in the emulsion, but background due to $\pi,\,\text{K},\,\text{K}^{\circ}_{\,\text{s}}$ decays

Di-muon statistics

CDHS (CERN WBB) $9922 \ \mu \mu^+$, $2123 \ \mu^+\mu^-$ eventsZeitschr. Phys. C (1982) 19-31CCFR (NuTeV) $5044 \ \mu^-\mu^+$, $1062 \ \mu^+\mu^-$ eventsZeitschr. Phys. C (1995) 189-198CHARMII (CERN WANF) $4111 \ \mu^-\mu^+$, $871 \ \mu^+\mu^-$ eventsEur. Phys. J., C11 (1999) 19-34NOMAD (CERN WANF) $2714 \ \mu^-\mu^+$, $115 \ \mu^+\mu^-$ eventsPhys.Lett.B486:35-48,2000CHORUS (CERN WANF) $8910 \ \mu^-\mu^+$, $430 \ \mu^+\mu^-$ eventsNucl..Phys.B798:1-16,2008

Measured:


momentum, angle and charge of muons energy of hadronic shower


Vr ORUS Vµ

Kinematics

Results are obtained using a global fit to the distributions

Good description of the kinematics is essential

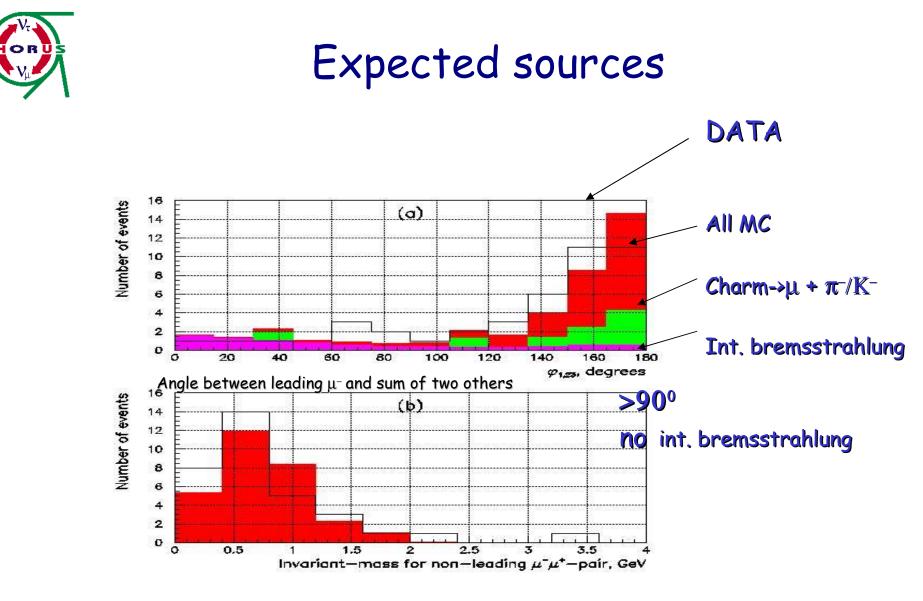
Result of analysis

Emulsion data Di-muon data • $m_c = 1.26 \pm 0.16 \text{ (stat)} \pm 0.09 \text{ (syst)}$ $(1.42 \pm 0.08) \text{ GeV}/c^2$ $m_{\rm c}$ using same α and $\kappa = 1.30 \pm 0.08 \text{ GeV}/c^2$ $= 0.33 \pm 0.05$ (stat) ± 0.05 (syst) • K • **E**_p $= 0.065 \pm 0.005 \text{ (stat)} \pm 0.009 \text{ (syst)}$ $\epsilon_P = 0.108 \pm 0.017 \pm 0.013.$ using same definition $0.059 \pm 0.010 \pm 0.008$ • B_{...} = 0.096 ± 0.004(stat) ± 0.008 (syst) $\overline{B_{\mu}} = [7.3 \pm 0.8 \text{ (stat)} \pm 0.2 \text{ (syst)}] \times 10^{-2}$ using E > 30 GeV $B_{\mu} = 0.085 \pm 0.010$

Other di-muon data

Experiment	m_c	k	B_{μ}
CDHS	-	$0.47 \pm 0.08 \pm 0.05$	0.084 ± 0.014
NOMAD	$1.3\pm0.3\pm0.3$	$0.48 \pm 0.08 \pm 0.15$	$0.095 \pm 0.007 \pm 0.013$
CHARM II	$1.8\pm0.3\pm0.3$	$0.39 \pm 0.07 \pm 0.07$	$0.091 \pm 0.007 \pm 0.007$
\mathbf{CCFR}	$1.3\pm0.2\pm0.1$	$0.44 \pm 0.07 \pm 0.05$	$0.109 \pm 0.008 \pm 0.006$
NUTEV	$1.33 \pm 0.19 \pm 0.10$	$0.32 \pm 0.06 \pm 0.04$	$0.1140 \pm 0.0108 \pm 0.0115$

Trimuon events in ν_{μ} CC interactions


Phys. Lett. B 596 (2004) 44

if di-muons -> single charm are then tri-muons double-charm?

```
CDHS and HPWF (1978): ~100 \mu^-\mu^-\mu^+ events – origin largely unknown
```

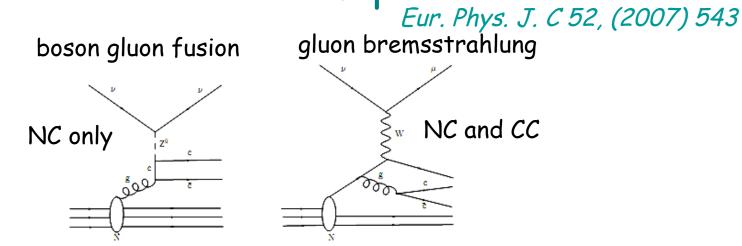
CHORUS:

~6×10° 2µ calorimeter triggers observed: 42 $\mu^-\mu^-\mu^+$, 3 $\mu^-\mu^+\mu^+$ (Pµ > 5 GeV/c) Detailed Monte-Carlo (LEPTO/JETSET/GEANT) 4×10° events with full detector simulation present knowledge of production rates and μ -decays of η , ρ , ω , η' , ϕ data-MC validation using 2µ events (known origin) data-MC comparison for 3µ event sample

Details

Meson	Decay	$BR \times 10^5$	$(N_{3\mu}/N_{ m CC}) imes 10^{6}$	N _{meson}
$\eta(548)$	$\mu^+\mu^-\gamma$	31±4	61±20	11.2±4.5
$\rho(770)$	$\mu^+\mu^-$	4.60±0.28	9.0±1.0	2.8±0.7
$\omega(782)$	$\mu^+\mu^-$	9.0±3.1	11.7±4.9	3.8±1.7
$\omega(782)$	$\pi^0 \mu^+ \mu^-$	9.6±2.3	12.5±4.3	3.0±1.0
$\eta'(958)$	$\mu^+\mu^-\gamma$	10.4±2.6	4.5±1.2	1.5±0.5
$\phi(1020)$	$\mu^+\mu^-$	28.7±2.0	$1.64{\pm}0.18$	0.8±0.2
All mesons			19 - 10	23.1±5.0

main 3µ sources


MC $\mu^-\mu^-\mu^+$ predictions

 $\begin{array}{c} \mbox{Charm->}\mu + \pi^-/K^- \mbox{decay} & 8.3 \pm 2.8 \\ \mbox{Internal bremsstrahlung (theoretical)} & 8.6 \pm 4.5 \\ \mbox{40} \\ \mbox{40} \\ \mbox{40} \\ \mbox{40} \\ \mbox{6} \\ \mbox{6}$

No sign of associated charm production --> need emulsion! ICPP Istanbul 2008

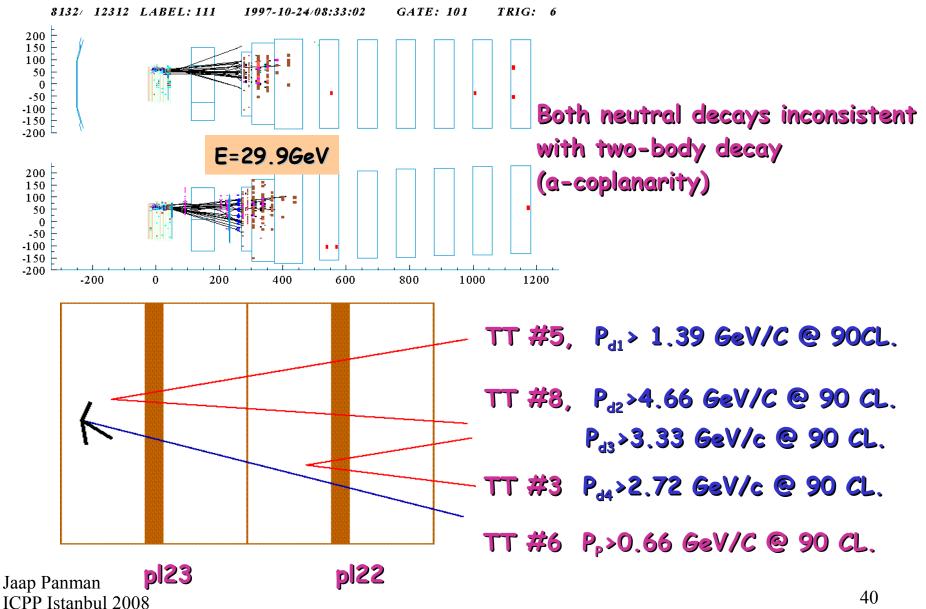
Associated charm production

Using NetScan technique to reconstruct vertices and inspect events with 2 secondary vertices "manually"

Compared to the usual charm analysis: additional criteria to reduce background:

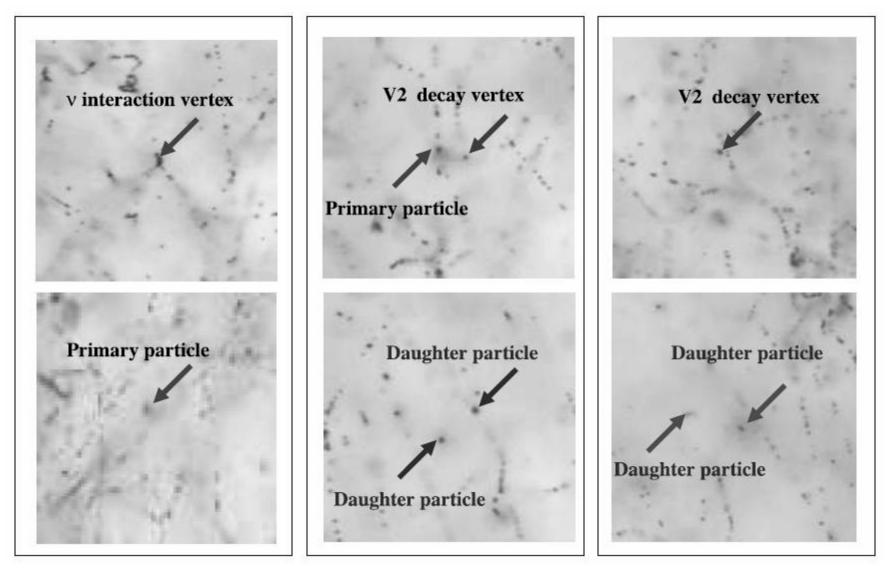
- "V2" require **a-coplanarity** to reject strange particle decays and "minimum mass" for V2

- "C1" require decay PT to reject "white kinks"

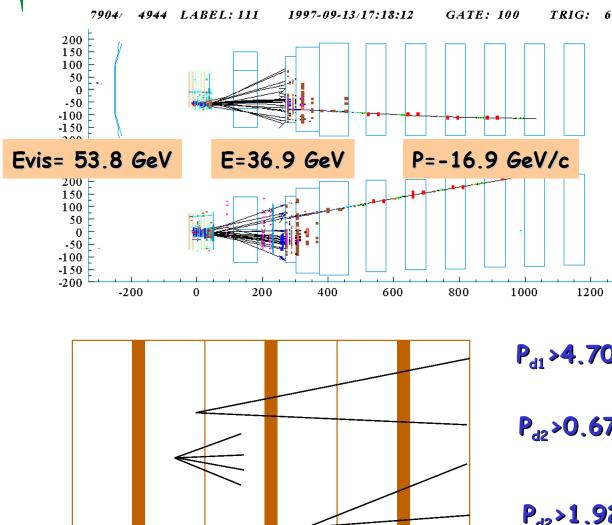

Background estimates:

NC: 0.03 events from non 2c and 0.15 events from CC associated charm CC: 0.18 events from non 2c

topology with 2 neutral decays almost without background Jaap Panman ICPP Istanbul 2008



example of NC event


Emulsion view of the same NC event

example of CC event

pl30

Both neutral decays inconsistent with twobody decay (a-coplanarity)

P_{d1}>4.70 GeV/c @ 90 CL.(TT #2)

P_{d2}>0.67 GeV/c @ 90 CL.

P_{d2}>1.92 GeV/c @90 CL.(TT #5) P_{d3}>2.32 GeV/c @90 CL.(TT #7)

PI31

candidates **3 NC:** V2+V2 background: 0.18 event (mainly from CC 2c) C1+V2 C3+V4

1 CC: V2+V4 background: 0.18 event (mainly with Cx)

$$\begin{array}{l} \text{NC} \quad \frac{\sigma(c\bar{c}\nu)}{\sigma_{\mathrm{NC}}^{\mathrm{DIS}}} = (3.62^{+2.95}_{-2.42}(\mathrm{stat}) \pm 0.54(\mathrm{syst})) \times 10^{-3} \\ \\ \text{CC} \quad \frac{\sigma(c\bar{c}\mu^{-})}{\sigma_{\mathrm{CC}}} < 9.69 \times 10^{-4} \ \text{ if interpreted as upper limit} \\ \quad 1.95^{+3.22}_{-1.44}(\mathrm{stat}) \pm 0.29(\mathrm{syst}) \times 10^{-\bar{4}} \ \text{ interpreted as signal} \end{array}$$

Although designed for neutrino oscillation search CHORUS has been able to make many charm production and decay measurements