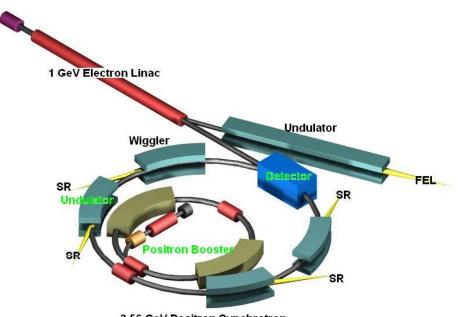

# Energy Recovery Linac as an Alternative Option for TAC and QCD-E Projects

## Bora KETENOĞLU\* Ankara University

\*On behalf of the TAC Collaboration

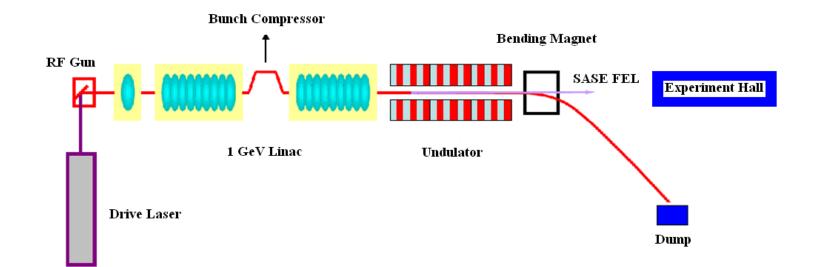



## Contents

- The Turkish Accelerator Center (TAC) Project SASE Mode Free Electron Laser (SASE FEL) Facility Proposal
- Accomplished Optimization and Design Studies up to now
- Future Prospects for the TAC SASE FEL Facility & Charm Factory (Energy Recovery Linac Option)
- Energy Recovery Linac Facilities Around the World
- The QCD-E Project
- ERL as an Alternative Option for QCD-E
- References



#### The Turkish Accelerator Center (TAC) Project SASE FEL Facility Proposal




3.56 GeV Positron Synchrotron

A SASE FEL facility was proposed for the TAC project in 2000 [1]. It was first planned to use the 1 GeV electron linac of the linac-ring type collider (Charm Factory) asynchronously.

The main goal of the proposal is to cover VUV and soft X-rays region of the spectrum besides IR-FEL, Bremsstrahlung and Synchrotron radiation proposals of the project.

# Schematic View of the TAC SASE FEL Facility



#### Similar to FLASH @ DESY



#### Proposed Electron Beam Parameters Based on a Pulsed RF Electron Gun for TAC SASE FEL Facility

| Electron Beam*                                     |      |
|----------------------------------------------------|------|
| Beam Energy (GeV)                                  | 1    |
| Number of Electrons per Bunch (x 10 <sup>9</sup> ) | 5.5  |
| Beam Current (mA)                                  | 26.4 |
| Peak Current (A)                                   | 2106 |
| Energy Spread (%)                                  | 0.1  |
| Normalized Emittance (µm.rad)                      | 3.1  |
| Transverse Beam Sizes (µm)                         | 75.2 |
| Longitudinal Bunch Length (mm)                     | 0.05 |

\*General Design of SASE and Oscillator Mode Free Electron Lasers in Frame of the Turkish Accelerator Complex Project, S. Yigit, PhD. Thesis, Ankara University, 2007.

**ICPP 2008** 

#### Optimized Undulator Parameters Based on a Samarium Cobalt Planar Undulator

| Undulator*                                       |       |
|--------------------------------------------------|-------|
| Period Length, $\lambda_{\!_{u}}\left(cm\right)$ | 3     |
| Gap, g (cm)                                      | 1.2   |
| Peak Magnetic Field, $B_u(T)$                    | 0.498 |
| K Parameter                                      | 1.395 |
| Saturation Length (m)                            | 36    |
| Number of Periods, (N)                           | 1200  |

\*General Design of SASE and Oscillator Mode Free Electron Lasers in Frame of the Turkish Accelerator Complex Project, S. Yigit, PhD. Thesis, Ankara University, 2007.

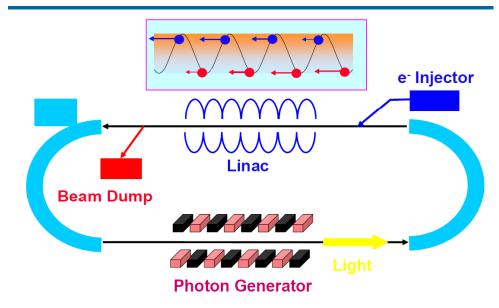
#### **Calculated FEL Parameters**

| SASE FEL*                                                |                      |
|----------------------------------------------------------|----------------------|
| Wavelength, $\lambda_{\text{SEL}}$ (nm)                  | 7.7                  |
| Photon Energy (eV)                                       | 160.5                |
| ho parameter                                             | 0.0018               |
| Peak Power (GW)                                          | 1.4                  |
| Average Power (kW)                                       | 21.8                 |
| Gain Length, $L_{g}(m)$                                  | 0.75                 |
| Gain Length, $3D L_g(m)$                                 | 1.57                 |
| Peak Flux (photons/s)                                    | 1.5x10 <sup>26</sup> |
| Peak Brightness<br>(Photons/s/mrad <sup>2</sup> /0.1%bg) | 1.7x10 <sup>29</sup> |
| Peak Brilliance<br>(photons/s/mm²/mrad²/0.1%bg)          | 2.9x10 <sup>30</sup> |

\*General Design of SASE and Oscillator Mode Free Electron Lasers in Frame of the Turkish Accelerator Complex Project, S. Yigit, PhD. Thesis, Ankara University, 2007.

#### **Ongoing Difficulties on Parameter Optimization**

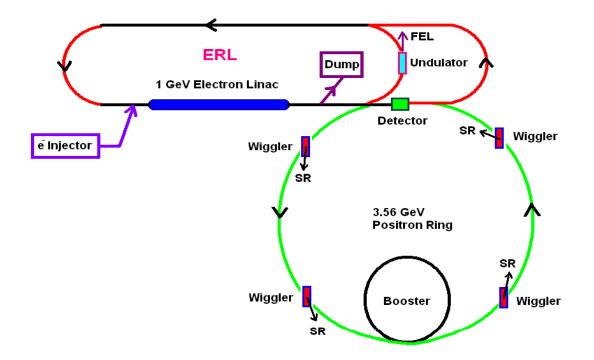
Atter optimization studies, it was shown that [2] some of the electron beam parameters make linac design complicated for both SASE FEL production and collider.


i) To achieve SASE FEL with a peak power about GWs, a peak current about kAs is required.

ii) Modifications on bunch sizes and emittance to arise the peak current show that, the linac for SASE FEL production must disparately be designed from the collider's.



#### Future Prospects for the TAC SASE FEL Facility: **ERL !...**


#### **Energy Recovery Linac Light Source**



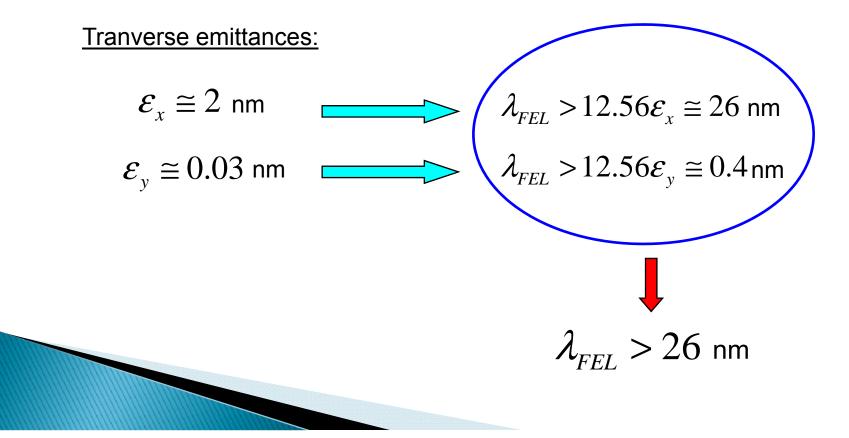
Electrons are released from the injector at the upper right, and are accelerated in a long linear superconducting accelerator (main linac). After emerging from this linac, the electrons pass through undulators that wiggle the electron beam and produce the x-rays in the usual way.

Electrons are continuously injected, make one trip around the ring, and return to the main linac where their energy is recovered. The spent beam is directed to the dump.

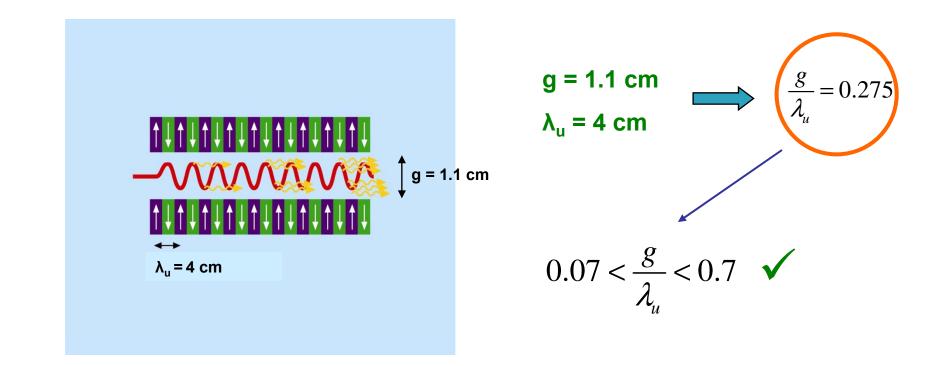
#### Schematic View of TAC ERL-Ring Type Collider & SASE FEL Facility






#### Proposed 1 GeV ERL Parameters for TAC

| ERL*                                                                     |             |
|--------------------------------------------------------------------------|-------------|
| Electron beam energy (GeV)                                               | 1           |
| Number of electrons per bunch (x10 <sup>10</sup> )                       | 2           |
| Normalized emittances $\mathcal{E}_x^{\ N}$ / $\mathcal{E}_y^{\ N}$ (µm) | 3.92 / 0.06 |
| $\sigma_{x} / \sigma_{y}$ (µm)                                           | 6.32 / 0.12 |
| σ <sub>z</sub> (mm)                                                      | 6           |
| Beam current (A)                                                         | 0.48        |
| Beta functions at IP $\beta_x$ / $\beta_y$ (mm)                          | 20 / 0.5    |


\* Recepoglu, E., Sultansoy, S. A high luminosity ERL on ring e<sup>-</sup>e<sup>+</sup> collider for a super charm factory, e-Print: 0809.3233 [physics.acc-ph].

#### Present Situation of TAC SASE FEL Based on 1 GeV ERL





For Samarium Cobalt Planar Undulator:





$$B_{u}(T) = 3.33 \exp\left\{-\frac{g}{\lambda_{u}}\left(5.47 - 1.8\frac{g}{\lambda_{u}}\right)\right\} = 0.848 \text{ T}$$

$$\lambda_{u} = 4 \text{ cm}, \qquad 0.275$$

$$\gamma_{1 \text{ GeV e}} = 1957$$

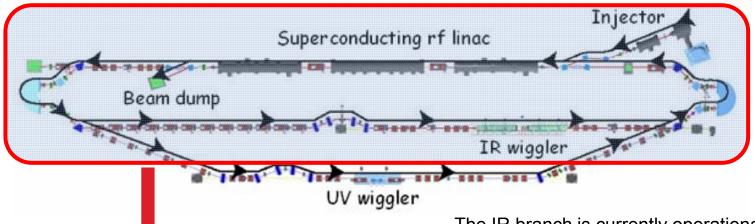
$$\lambda_{FEL}[cm] = \frac{\lambda_{u}[cm]}{2\gamma^{2}}\left(1 + \frac{K^{2}}{2}\right) \qquad K = 0.934\lambda_{u}[cm]B_{u}[T]$$

$$\lambda_{FEL} \cong 32 \text{ nm} > 4\pi\varepsilon_{x}(26 \text{ nm})$$

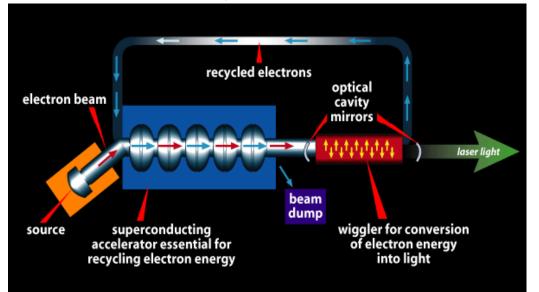
$$\frac{1000}{100} + \frac{1000}{100} + \frac{1$$

#### Operating ERLs Around The World as FEL Drivers

Today, there are 3 operating ERLs, all of which are used as FEL drivers:

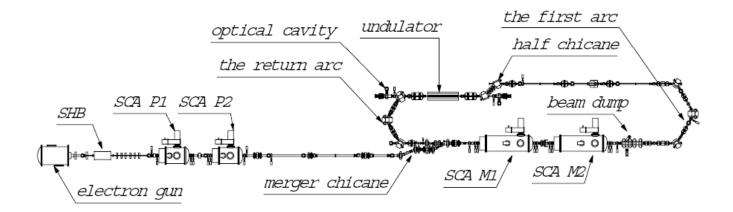

| I. | The J | lab | IR-F | EL |
|----|-------|-----|------|----|
|----|-------|-----|------|----|

- II. The Japan Atomic Energy Agency (JAEA) FEL
- III. The Novosibirsk High Power THz FEL


|                          | <b>JLAB</b><br>Design /<br>Achieved <sup>*</sup> | JAEA         | Novosibirsk<br>Operating /<br>Upgrade |
|--------------------------|--------------------------------------------------|--------------|---------------------------------------|
| E [MeV]                  | 145 / 160                                        | 17           | 12 / 14                               |
| I <sub>ave</sub> [mA]    | 10 / 9.1                                         | 8.3**        | 20 / 150                              |
| q [pC]                   | 135 / 270                                        | 400          | 1700                                  |
| ε <sub>n</sub> [µm], rms | 30 / 7                                           | 30           | 30 / 15                               |
| Bunch Length             | 200 / 120 fs (rms)                               | 12 ps (fwhm) | 0.07 / 0.1 ns                         |
| Bunch Rep. Rate [MHz]    | 75                                               | 20.8         | 11.2 / 90                             |

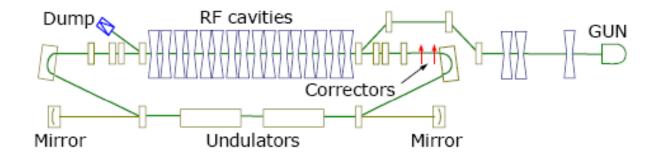
\* Not simultaneously \*\* In the macropulse

#### Jefferson Lab Superconducting ERL Based FEL



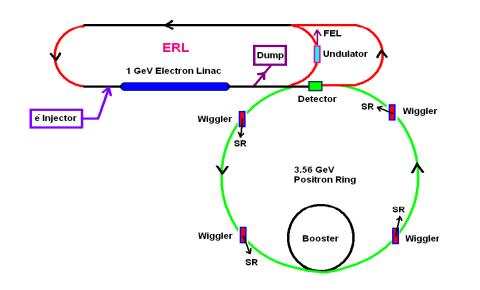

The IR branch is currently operational, the UV branch will be commissioned during 2009.




| FEL Parameters           | IR        | UV       |
|--------------------------|-----------|----------|
| Wavelength range (µm)    | 1.5 - 14  | 0.25 – 1 |
| Bunch length (FWHM ps)   | 0.2 - 2   | 0.2 - 2  |
| Laser power / pulse (µJ) | 100 - 300 | 25       |
| Laser power (kW)         | > 10      | > 1      |
| Rep. Rate (cw, MHz)      | 4.7 -75   | 4.7 - 75 |

#### JAEA Superconducting ERL Based FEL




| Undulator & FEL Parameters          | IR           |
|-------------------------------------|--------------|
| Wavelength (µm)                     | 22           |
| Bunch length at undulator (FWHM ps) | 12           |
| Undulator period (cm)               | 3.3          |
| Number of periods                   | 52           |
| Bunch Repitation (MHz)              | 20.825       |
| Undulator parameter (rms)           | 0.7          |
| Macropulse                          | 1 ms x 10 Hz |

#### Novosibirsk ERL Based FEL (Low Frequency-Normal Conducting)

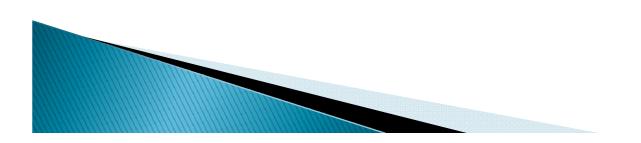


| FEL Parameters                      | IR         |
|-------------------------------------|------------|
| Wavelength range (µm)               | 120 - 240  |
| Bunch length (continious train, ps) | 40 - 100   |
| Maxiumum average output power (W)   | 400        |
| Peak power (MW)                     | > 1        |
| Rep. Rate (MHz)                     | 2.8 - 11.2 |

#### TAC ERL-Ring Type Super Charm Factory Proposal



ERL-ring type super charm factory will give an opportunity to achieve L =  $2.3 \cdot 10^{35}$  cm<sup>-2</sup>s<sup>-1</sup>, which essentially exceed the luminosity values of existing and proposed standard type (ringring) charm factories. This leads to an obvious advantage in search for rare decays. Another important feature of linac-ring type charm factory is the asymmetric kinematics. This will be important in investigation of oscillations and CP-violation in the charm sector of the SM<sup>\*</sup>.


\* Recepoglu, E., Sultansoy, S. A high luminosity ERL on ring e<sup>-</sup>e<sup>+</sup> collider for a super charm factory, e-Print: 0809.3233 [physics.acc-ph]



#### TAC ERL Based Super Charm Factory Collider Parameters

| Collider*                                                |                         |
|----------------------------------------------------------|-------------------------|
| Crossing angle $\theta$ (mrad)                           | 34                      |
| Collision frequency (MHz)                                | 150                     |
| Geometric Luminosity (cm <sup>-2</sup> s <sup>-1</sup> ) | 1.14·10 <sup>35</sup>   |
| Luminosity enhancement factor, H <sub>D</sub>            | 2.03                    |
| Luminosity (cm <sup>-2</sup> s <sup>-1</sup> )           | 2.31 · 10 <sup>35</sup> |

\* Recepoglu, E., Sultansoy, S. A high luminosity ERL on ring e<sup>-</sup>e<sup>+</sup> collider for a super charm factory, e-Print: 0809.3233 [physics.acc-ph]

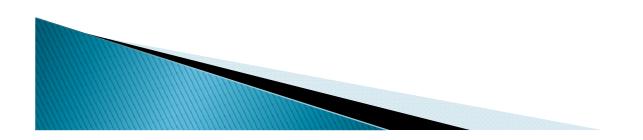



## **The QCD-E Project**

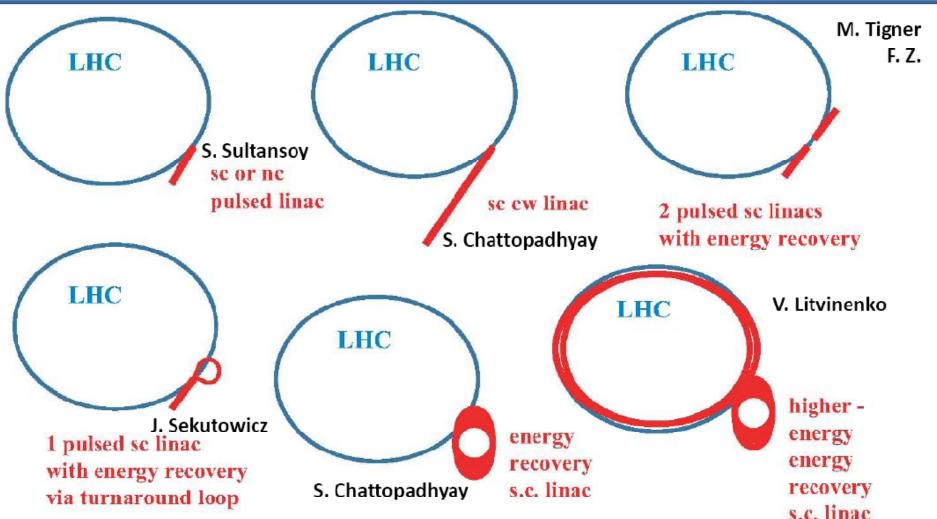
The QCD-E project is a linac-ring type electron-proton collider with a center of mass energy  $\sqrt{s} = 1.4$  TeV based on CERN-LHC. Nowadays, ERL option is coming into question and seems as a more promising option.

Energy of the electron beam: 70 GeV (ERL)

Energy of the proton beam: 7 TeV (LHC)


To achieve the luminosity more than 10<sup>33</sup> cm<sup>-2</sup>s<sup>-1</sup>, ERL usage is required for the electron beam.




Following three slides are quoted from F. Zimmermann *et al.* LHeC Ring-Linac options, 1<sup>st</sup> ECFA-CERN LHeC Workshop, 2008.

ICPP 2008

- colliding 7 TeV p's with 25-140 (-300) GeV e-'s:
  - ightarrow extending LHC discovery reach
  - ightarrow enabling LHC precision physics
- history: Ankara workshop 1997, <u>Turkish JP, 22, 7 (1998)</u>
  - -S. Sultansoy, Aachen 2003, EPJ C33: S1064 (2004)
  - -D.Schulte,F.Zimmermann, <u>EPAC'04</u>(CLIC-1/LHC p s-bunch)
  - -H. Aksakal et al, <u>NIM A576: 287 (2007)</u> (CLIC & ILC vs LHC)
  - S. Chattopadhyay: *cw!, ERL!* (2007), A. Eide's <u>report</u> (2008)
  - -V. Litvinenko, <u>CERN AB Form 11 March 2008</u>
  - -F. Zimmermann et al, EPAC'08
  - -J. Skrabacz' <u>report</u> (2008)
- e- linac offers several distinct advantages
  - e.g.: separation from LHC, high beam quality, synergies



# LR scenarios




s.c. linac , long trains of bunches, 25-ns or 50-ns spacing, matching LHC p beam (*PLACET: stable*); long pulse or  $cw \rightarrow$  high luminosity; optional energy recovery  $\rightarrow$  higher luminosity; 1.3 GHz (ILC) or 700 MHz (SPL)

# Linac-Ring Potential

#### 100 MW wall plug power

| 20 GeV                           | 60 GeV                           | 60 GeV                           | 140 GeV                          |
|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| 98% energy                       | w/o energy                       | 98% energy                       | 98% energy                       |
| recovery                         | recovery                         | recovery                         | recovery                         |
| 5x10 <sup>34</sup>               | 5x10 <sup>32</sup>               | 1x10 <sup>34</sup>               | 4x10 <sup>33</sup>               |
| cm <sup>-2</sup> s <sup>-1</sup> |

proton parameters from LHC "phase-2" upgrade  $N_{\rm b}$ =5x10<sup>11</sup>, 50 ns spacing,  $\gamma \epsilon$ =3.75  $\mu$ m,  $\beta$ \*=0.1 m



## References

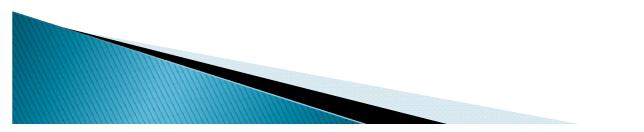
[1] Ciftci, A. K. *et al.* Linac-Ring Type Ø Factory for Basic and Applied Research, Turkish J. of Physics, 24 (2000), 747-758.

[2] General Design of SASE and Oscillator Mode Free Electron Lasers in Frame of the Turkish Accelerator Complex Project, S. Yigit, PhD. Thesis, Ankara University, 2007.

[3] Merminga, L. Energy Recovery Linacs, Proceedings of PAC07, 2007.

[4] Recepoglu, E., Sultansoy, S. A High Luminosity ERL on ring e<sup>-</sup>e<sup>+</sup> collider for a super charm factory, e-Print: 0809.3233 [physics.acc-ph].

[5] Sultansoy, S. Eur. Phys. J. C33, 01 1064 (2004).


[6] Sultansoy, S., Karadeniz, H. QCD-Explorer Proposal: e-linac versus e-ring, Proceedings of EPAC06, 2006.

[7] Zimmermann, F. et al. Linac-LHC ep Collider Options, Proceedings of EPAC08, 2008.

[8] Zimmermann, F. et al. LHeC Ring-Linac options, 1st ECFA-CERN LHeC Workshop, 2008.

[9] www.flash.desy.de

[10] http://thm.ankara.edu.tr



# Thanks a lot for your attention...

