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The Large Hadron Collider and CMS
3]

LHC will collide beams of protons up to 14TeV.
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Motivation
I

Jets are one of the experimental signatures of quarks and gluons from hard collisions.
Jet Shapes measure the energy flow distribution within a jet.

Test showering models in Monte Carlo generators
Discriminate between different underlying event models

Provide insight into performance of jet clustering algorithms
Possible application in searches for new physics

Previous measurements have been donein p p , ep and ee colliders

outgoing parton
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Jet Algorithms

Jet finding algorithms are used to associate particles to particular jet.

Major classes of jet algorithms:
Cone: cluster objects close in angle
Simple shape, unless jets overlap

kT: cluster objects close in relative P+

Irreqular shape
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Jet Algorithms in CMS

I
 SISCone  Iterative Cone (ICone)

® Seedless IRC Safe Cone algorithm @ lteratively searches for stable cones
e Searches for all stable cones of @ input objects assigned to a jet are
size R=V((Ay)? + (AD)?) removed before the next iteration
® Applies splitting/merging e No splitting/merging
@ No remaining unclustered inputs e Seed based, not IRC safe
e Seed E; > 1 GeV

d (Fast) kT
@ Controlled by the jet separation 1 Midpoint Cone (MCone)
parameter D (determines jet “size”) e Also seed based
e Uses sequential recombination of o Adds extra seeds between stable cones
4vectors (“midpoints”)
ebased on relative kT e Not Infrared Collinear safe
e Infrared Collinear safe ® Does not remove “used” inputs
e Applies splitting/merging
e Leaves unclustered energy
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Jet Shapes
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Differential Jet Shape

T p.(r=0r/2,r+dr/2)
plrj=——2 .
6" NjEIS je's PT(O.R)

Definition: The average fraction of the
jet's transverse momentum that lies inside an
annulus in the y-® plane of inner (outer) radius
r-Ar/2 (r+Ar/2) concentric to the jet cone.

Definition : Integrated jet shape is defined
as the average fraction of jet transverse
momentum that lies inside a cone of radius

r concentric to the jet axis.

Integrated Jet Shape
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Data sets and Definitions
Y

HCAL towers and n cut
n =‘I.Z

*

(J QCD dijet samples (PYTHIA, HERWIG++) o
] Calorimeter Towers E;>0.5 GeV | Ty = g

Clustering Algorithm Study :

1 Only particles/towers associated to jet by algorit
1 Midpoint Cone (MCone), Iterative Cone (ICone),
1 Seedless Infrared Safe Cone (SISCone)

[ (cone radius R=0.5)

KT ( size parameter D=0.4, D=0.6 and D=1.0)

e
©

Jet Fraction
e o

—— GluonJets
QuarkJets

o o
o O

o

[
_IIII|]|I—TI.‘.I.II|IIII|III[|IIII|IIII|III T

A

Jet Shape Study :
- Jet axis from SISCone R=0.7
1 All particles/towers within R=0.7 of jet axis
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Integrated Jet Shapes
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The jet shapes get narrower with increasing jet P-.
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Clustering Study of kT Algorithm
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The performance of the kT jet clustering algorithm was tested by looking into the internal
structure of jets by PYTHIA DWT. Jets with larger D extends to larger distances.
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Study of Jet Algorithms
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KT jet properties are similar to the properties of jets clustered by the cone algorithms
(CMS-PAS-JME-07-003). Shown results are from particle and calorimeter level as given

by PYTHIA DWT.
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Pythia events with different Underlying Event Tune
%

Well tuned MC’s are essential for a precise measurement and proper comparison

with the theoretical predictions.
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Monte Carlo Event Generators
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Two different Monte Carlo Tune PYTHIA DWT and HERWIG++ were
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Quark & Gluon Jets
]

Quark & Gluon jets radiate proportionally to their color factor

a Jet profiles are sensitive to the quark/gluon jet mixture

2 Could separate quark and gluon jets in a statistical way
2

g o
q—2Zg| ~Ci=453

_Z.gg NCA:?)

g

Cr ~ strength of a gluon coupling to a quark
Color factors reflect basic properties of QCD. Quark jets

C, ~ strength of the gluon self coupling

At Leading Order (E;,, —0):

are narrower than the gluon jets due to the coupling
strengths. Therefore the jets produced by quarks and
gluons will show differences in their average particle

multiplicity and the shape of the spectrum constituents.
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Quark and Gluon Jet Contributions
sy

0 Monte Carlo predicts that the measured jet shapes are dominated by
contributions from gluon initiated jets at low jet P; while contributions from quark

initiated jets become important at high jet P;.
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Quark and Gluon Fraction
‘6l
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) Mixture of the quark and gluons in the final state changes with jet P; contribution to the jet shape
dependence on Py .

2 PYTHIA predicts the fraction of the gluon initiated jets as 79% at low jet P; and about 38% at high Py

) Jets become more collimated with the increasing jet P since a. (P;) decreases with the increasing jet P+

) Quark jets are narrower than the gluon jets since quarks have smaller color charge.
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Summary
B

1 Using PYTHIA and HERWIG++ MC simulations we have estimated a
technique to measure jet shapes in p-p collisions at 14 TeV.

] Jets get narrower with the increasing jet P-.

] Different UE tunes have been investigated. PYTHIA DW tends to produce
narrower jets at the low P.

J Quark jets are narrower than the gluon jets.

1 A full study including CMS simulation is in preparation.
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