
The Physics Case for CLICThe Physics Case for CLIC

• Outline of the CLIC project
• Why an e+ e- collider with ECM = 3 TeV? y CM

• A significant step beyond the LHC/ILC for 
precision measurements at high energiesprecision measurements at high energies
– Complete study of the Higgs boson(s)?
– Supersymmetric spectra?Supersymmetric spectra?
– Deeper probes of extra dimensions?
– New gauge bosons excited quarks leptons?New gauge bosons, excited quarks,leptons?

• More to add, whatever the LHC offers

CLIC Physics Studies 1987 -



World-Wide CLIC CollaborationWo d W de C C Co bo o



The Conceptual Layout of CLICThe Conceptual Layout of CLIC

P fPower from 
low-energy, high-intensity beam 

drives 
high-energy, low intensity beam



Nominal CLIC ParametersNo C C e e s



CLIC Accelerating StructureCLIC Accelerating Structure



Nominal Performance DemonstratedNominal Performance Demonstrated



Possible CLIC TimelinePossible CLIC Timeline
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Waiting for the Higgs bosonWaiting for the Higgs boson

Higgs probability distribution:
bi i di

How soon will the Higgs be found? …
combining direct,
indirect information

The Tevatron or LHC may soon say the Higgs cannot have an
intermediate mass: must be either LIGHT, or HEAVY …? 



If there is a light Higgs boson …

• Large cross section @ CLIC
• Measure rare Higgs decays unobservable at 

LHC or a lower-energy e+ e- collidergy
• CLIC could measure the effective potential 

with 10% precisionwith 10% precision
• CLIC could search indirectly for 

accompanying new physics up to 100 TeVaccompanying new physics up to 100 TeV
• CLIC could identify any heavier partners



Large Cross Sectiong
@ CLIC

Can measure rare decay modes y
…

H bb

Δg/g = 4% Δg/g = 2%

mH = 120 GeV mH = 180 GeV



Measure Effective Higgs Potential

Large cross section Accuracy in measurement of HHH couplingfor HH pair production Accuracy in measurement of HHH coupling

MH = 240 GeV
180 GeV 11%
140 GeV
120 GeV 9%



If the Higgs 
is light …

LEP ?

There must be new physics
below 1000 TeV …

… and CLIC has a
good chance to find itg
in contact interactions



Identify Heavier Partner HiggsesIdentify Heavier Partner Higgses

Charged …
1%

or ne tral… or neutral



Theorists getting Cold Feet

• Little Higgs models
extra ‘Top’, gauge bosons, ‘Higgses’

• Interpretation of EW data?Interpretation of EW data?
consistency of measurements? heavier Higgs?
Hi + hi h di i l t ?• Higgs + higher-dimensional operators?
corridors to higher Higgs masses?

• Higgsless models
strong WW scattering extra D?strong WW scattering, extra D?



i i lGeneric Little
Higgs SpectrumHiggs Spectrum

Loop cancellation mechanisms

Supersymmetry Little Higgs



H ti l I t t ti f EW D tHeretical Interpretation of EW Data

Do all the data 
What attitude towards LEP, NuTeV?

tell the same story?
e.g., AL vs AH What mostWhat most

of us think



Hi + Hi h O d O tHiggs + Higher-Order Operators

Precision EW data suggest they are small: why?
Corridor to
heavy Higgs?ec s o W data suggest t ey a e s a : w y? heavy Higgs?

But conspiracies
are possible: mH
could be largecould be large, 
even if  believe
EW data …?

Do not discard possibility of heavy Higgs



If the Higgs boson is heavierIf the Higgs boson is heavier …
C bli h i i Fi d iCan establish its existence
beyond any doubt if < 1 TeV:

ee H ee

Find resonance in strong
WW scattering if  > 1 TeV:

ee H ννee H ee ee H νν



If there is no Higgs boson …

• The LHC might find a hint of strong WW 
iscattering

• The new physics might be invisible at a lower-
energy e+ e- collider

• CLIC could study strong WW scattering with high y g g g
statistics and precision

• CLIC best placed to see/understand scenarios withCLIC best placed to see/understand scenarios with 
composite Higgs/quarks/leptons



Why Supersymmetry (Susy)?

• Intrinsic beauty• Intrinsic beauty
• Hierarchy/naturalness problem 
• Unification of the gauge couplings
• Predict light Higgs < 150 GeVPredict light Higgs < 150 GeV

– As suggested by precision electroweak data
C ld d k tt• Cold dark matter

• Essential ingredient in string theory (?)



Current Constraints on the CMSSM

assuming neutralino LSP

Excluded because stau LSP

Excluded by b s gammay g

WMAP constraint on relic density

Favoured (?) by latest g - 2



Implications of LHC Search for LCImplications of LHC Search for LC

In CMSSMIn CMSSM LHC gluino
mass reach

Corresponding sparticle 
thresholds @ LC

LHC will tell LC
where to lookwhere to look

1 ‘year’ @ 10341 ‘year’ @ 1033‘month’ @ 1033‘month’ @ 1032

Blaising, JE et al: 2006



Sparticles may not be very lightSparticles may not be very light
Fullu

Model
samples

←
 Sec

Detectable
@ LHC

cond lig@ LHC

Provide

ghtest viCLIC
3 T V

ILC
1 T VDark Matter

Dark Matter

isible sp

3 TeV1 TeV

Dark Matter
Detectable
Directly

particle

Lightest visible sparticle →

e

JE + Olive + Santoso + Spano



LHC and CLIC
Scapabilities 

and Other… and Other
Accelerators

LHC almost
‘guaranteed’
to discoverto discover
supersymmetry
if it is relevant

h blto the mass problem



Sparticles at Lower-Energy LC

Complementar to LHC: eakl interacting sparticles

CMSSM
Complementary to LHC: weakly-interacting sparticles



Sparticle Visibility at CLIC

3 TeV 5 TeVCMSSM

See ‘all’ sparticles: measure heavier ones better than LHC



How Soon Might the CMSSM be g
Detected?

O.Buchmueller et al



How Soon Might the NUHM1 be g
Detected?

O.Buchmueller et al



B t Fit S tBest-Fit Spectra

• NUHM1• CMSSM

Accessible
To CLIC

Accessible
to ILC 1000

To CLIC

Accessible
T ILC 500

to ILC 1000

O.Buchmueller et al

To ILC 500



S iti it t U t i tiSensitivity to Uncertainties

• b → sγ• gμ - 2

O.Buchmueller et al



Example of CLIC Sparticle SearchExample of CLIC Sparticle Search

Dilepton spectrum in neutralino decay Reach in parameter space

2%2%



Sl @ C CMeasure Heavy Sleptons @ CLIC

Can measure smuon
decay spectrum

Can measure 
sparticle massesdecay spectrum sparticle masses

3%

2.5%
.



If the LHC discovers supersymmetry …

• CLIC could complete the spectrum
• CLIC would make many novel detailed• CLIC would make many novel, detailed 

measurements
• Cast light on mechanism of supersymmetry 

breaking?g
• Open a window on string physics?



Sparticle MassSparticle Mass
Unification ? E  L  D  Q  U  τ  υτ B  Q3 T  H1 H2

Accuracy in measuring 
sparticle masses squared

Can test unification 
of sparticle masses –
probe of string models?



Gravitino Dark Matter ScenariosGravitino Dark Matter Scenarios
with metastable stau as next-to-lightest sparticle

i

with metastable stau as next-to-lightest sparticle

Scenario with small

mSUGRA scenario

gravitino mass

Including
bound-state

‘Sweet spot’
For Lithium

effects

For Lithium

Cyburt, JE, Fields, Olive + Spanos



Cross Section for Stau Production in 
+ A ihil tie+e- Annihilation

Benchmark inBenchmark in 
‘sweet spot’ 
for Lithiumfor LithiumX-sections for

stoppable staus

Cakir + Turk-Cakir + JE + Kirca



Slow-Moving Staus Stop in Detectorg p
Beam conditionsBeam conditions

optimized for
Staus with low βγ

optimized for total
cross section βγ

Cakir + Turk-Cakir + JE + Kirca



Total Rates for Stoppable Stau 
d i i + A ihil iProduction in e+e- Annihilation

Including cascadeIncluding cascade
decays of heavier

sparticlessparticles

Cakir + Turk-Cakir + JE + Kirca



If the LHC discovers extra dimensionsIf the LHC discovers extra dimensions

Easily distinguishable 
f St d d M d lMini-black hole at CLIC from Standard Model
background



CLIC could measure Kaluza-CLIC could measure Kaluza-
Klein excitations

Direct channel resonances Angular distribution in graviton decayDirect-channel resonances Angular distribution in graviton decay



CLIC ΔΓ = 0 4%CLIC can 
measure a Z’

ΔΓ = 0.4%

measure a Z

Δm = 0.01%

and constrain 
the triple gaugethe triple-gauge 

coupling
0.00013 @ 3 TeV

coupling



Squarks 2.5 0.4 3 1.5 2.5
Process   LHC/ILC/SLHC/CLIC 3,5 TeV

Physics
Sleptons 0.34 0.4 1.5 2.5

Physics
Reaches

Of

New gauge boson
Z’

5 8 6 22 28

Of
Various

Excited quark q* 6.5 0.8 7.5 3 5

Excited lepton l* 3.4 0.8 3 5

Colliders
Two extra space 
dimensions

9 5–8.5 12 20-35 30–55

Strong WLWL
scattering

2σ - 4σ 70σ 90σ

Triple-gauge
Coupling(TGC)
(95%)

.0014 0.0004 0.0006 0.00013 0.00008

(95%)

Scale of
compositeness

30 100 40 300 400

Integrated luminosities used are 100 fb–1 for the LHC, 500 fb–1 for the 800 GeV LC, and 1000 fb–
1 for the SLHC and CLIC. Most numbers given are TeV, but for strong WLWL scattering the
numbers of standard deviations, and pure numbers for the triple gauge coupling (TGC).



Conclusions

• CLIC will provide unique physics @ energy 
f tifrontier

• Beamstrahlung and backgrounds not g g
insurmountable problems

• Can exploit fully high c.o.m. energyCan exploit fully high c.o.m. energy
• Added value for light Higgs, heavy Higgs, 

supersymmetry extra dimensionssupersymmetry, extra dimensions, …
• Whether light or heavy!



Meta-Conclusions

• The LHC will define the future course of 
hi h h ihigh-energy physics

• All scenarios best explored by a high-p y g
energy e+ e- collider 

• Should have widest possible technologyShould have widest possible technology 
choice when LHC results appear

• CLIC and ILC are working together• CLIC and ILC are working together
• Determine feasibility of CLIC technology 

b h d f hi d dby the end of this decade



Supersymmetric Benchmark StudiesSupersymmetric Benchmark Studies

Specific
benchmark 

Lines in 
susy space
allowed by

Points along
WMAP lines

allowed by
accelerators,
WMAP data

Sparticle
d t t bilit

Calculation
detectability
Along one
WMAP line

of relic
density at a 
benchmarkbenchmark 
point

BDEG(M)OP(W)



The Reach of the LHC for New 
High-Mass Physics



Huge Statistics thanks to High Energy and Luminosity
Event rates in ATLAS or CMS  at L = 1033 cm-2 s-1

Process                          Events/s Events per year    Total statistics collectedp y
at previous machines by 2007

W→ eν 15 108    104 LEP / 107 Tevatron 

Z→ ee                           1.5 107 107 LEP

1 107 104 Tevatrontt

106 1012 – 1013 109 Belle/BaBar   ?bb

H  m=130 GeV               0.02 105 ? 

LHC-b

gg~~ m= 1 TeV               0.001 104 ---

Black holes                   0.0001 103 ---

i f f hi / i

m > 3 TeV
(MD=3 TeV, n=4) + Ion Collisions

LHC is a factory for anything:  top, W/Z, Higgs, SUSY, etc….
mass reach for discovery of new particles up to  m ~ 5 TeV



Cross Sections at CLIC



Experimental Issues:Experimental Issues: 
Backgrounds

CLIC  3 TeV e+e- collider with a luminosity ~ 1035cm-2s-1 (1 ab-1/year)  

To reach this high luminosity: CLICBackgrounds g y
has to operate in a regime of high 

beamstrahlung 

Expect large backgrounds
# f ph t ns/b m p ti l# of photons/beam particle
• e+e- pair production
• γ γ events

b k d• Muon backgrounds
• Neutrons
• Synchrotron radiationy
Expect distorted lumi spectrumReport →

Old Values



Experimental issues: Luminosity 
SpectrumSpectrum

Luminosity spectrum not as
sh l k d s t LEPsharply peaked as e.g. at LEP
or TESLA/NLC



New Parameters..See D. Schulte

• Same bunch distance (0 6 nsec)• Same bunch distance (0.6 nsec)
• 2 x more bunches per train
• Backgrounds similar or somewhat better 

Do not except significant differences with studies in the report



R Z’Example: Resonance ProductionResonance scans, e.g. a Z’

D

1 ab-1 ⇒δM/M ~ 10-4 & δΓ/Γ = 3.10-3

Degenerate resonances
e.g. D-BESS model

Can measure ΔM down to 13 GeV

Smeared lumi spectrum allowsSmeared lumi spectrum allows
still for precision measurements



Physics Case: the light Higgs

Low mass Higgs:
400 000 Higgses/

• Large cross sections
Large CLIC luminosity

⇒ O(500 K) Higgses/year
Allows to study the decay• Large CLIC luminosity

→Large events statistics
• Keep large statistics 
l

Allows to study the decay
modes with BRs ~ 10-4 such
as H→μμ and H→bb (>180 GeV)
E d t i t 4%also    

for highest Higgs 
masses

Eg: determine gHμμ to ~4%



Physics case: Heavy HiggsPhysics case: Heavy Higgs 
(MSSM)

LHC: Plot for 5 σ discovery

(MSSM)

3 TeV CLIC
H A⇒ H, A   

detectable 
up to ~ 1.2 
TeVTeV



Susy Mass MeasurementsMomentum resolution (G3)

Mass measurements
to O(1%)to O(1%)

Momentum resolution
δp /p 2 10-4 GeV-1δpt/pt

2 ~ 10-4 GeV-1

adequate for this
measurement



Sensitivity to χ2→ χ1+2 leptons Case study: χ2

Sensitivity (5σ) for LHC and LC Mass measurement precision
mχ2= 540 GeV, mχ1=290 GeV

1 5% p isi n~1.5% precision
on χ2 mass



Physics Case: Extra Dimensions

Universal extra dimensions: RS KK resonances
⇒ Measure all (pair produced) new
particles and see the higher level 
excitations

RS KK resonances…
Scan the different states

excitations



Rare Higgs Decays: H→μμNot easy to access at a 500 GeV collider

gHμμ



How `Likely’ are Large Sparticle y g p
Masses?

Fine-tuning of EW scale Fine-tuning of relic density

Larger masses require more fine-tuning: but how much is too much?



How much of Susy Parameter SpaceHow much of Susy Parameter Space 
Covered by LC?

Scatter plot of twoScatter plot of two
lightest observable
sparticles: NSP, NNSPp ,

CMSSMCMSSMReach of 1000 GeV LC

Reach of 500 GeV LCReach of 500 GeV LC





Why Supersymmetry (Susy)?
• Hierarchy problem: why is mW << mP ? 

(m 1019 GeV is scale of gravity)(mP ~ 1019 GeV is scale of gravity)
• Alternatively, why is 

G 1/ 2 G 1/ 2 ?GF = 1/ mW
2 >> GN = 1/mP

2 ?
• Or, why is 

VCoulomb >> VNewton ?  e2 >> G m2 = m2 / mP
2

• Set by hand? What about loop corrections? y p
δmH,W

2 = O(α/π) Λ2

• Cancel boson loops fermionsCancel boson loops fermions
• Need     | mB

2 – mF
2| < 1 TeV2



Oth R t lik SOther Reasons to like Susy

It enables the gauge couplings to unify

It stabilizes the Higgs potential for low masses

Approved by Fabiola Gianotti



CurrentCurrent 
Constraints Different

β
on 

tan β
sign of μ

CMSSM

Impact ofp
Higgs
constraint

d dreduced
if larger mt
Focus-pointFocus point
region far up



Exploring the Supersymmetric p g p y
Parameter Space

Strips allowed by WMAP p y
and other constraints

Numbers of
sparticle
species

Numbers of
sparticle
speciesspecies

detected 
at LHC
l WMAP

species
detected 
at CLIC
l WMAPalong WMAP

strip
along WMAP
strip



Different
Different

Regions of 
S ti l

Different
Gravitino
massesSparticle

ParameterParameter
Space ifp

Gravitino 

D i b l

LSP
Density below
WMAP limit

Decays do not affect
BBN/CMB agreement



Effects on GDM parameter p
Space

Scenario with fixed
gravitino mass

Including
bound-state

Scenario with varying
effects

gravitino mass

‘Sweet spot’
For LithiumCyburt, JE, Fields, Olive + Spanos



Littl Hi M d lLittle Higgs Models

• Embed SM in larger gauge group
• Higgs as pseudo Goldstone boson• Higgs as pseudo-Goldstone boson
• Cancel top loop 

with new heavy T quarkwith new heavy T quark

N b Hi• New gauge bosons, Higgses
• Higgs light, other new

MT < 2 TeV (mh / 200 GeV)2

MW’ < 6 TeV (mh / 200 GeV)2

M 10 T Vphysics heavy
Many extra particles accessible to CLIC

MH++ < 10 TeV



If the LHC discovers supersymmetry …

• CLIC could complete the spectrum



If there is a light Higgs boson …

• Large cross section @ CLIC
• Measure rare Higgs decays unobservable at 

LHC or a lower-energy e+ e- colliderLHC or a lower energy e e collider



If there is a light Higgs boson …

• Large cross section @ CLIC
• Measure rare Higgs decays unobservable at 

LHC or a lower-energy e+ e- colliderLHC or a lower energy e e collider
• CLIC could measure the effective potential 

i h i iwith 10% precision



Higgsless Models

• Four-dimensional versions:
Strong WW scattering @ TeV, incompatible with precision data?

• Break EW symmetry by boundary conditions in extra 
dimension:dimension:
delay strong WW scattering to ~ 10 TeV?
Kaluza Klein modes: m > 300 GeV?Kaluza-Klein modes: mKK > 300 GeV?
compatibility with precision data?

• Warped extra dimension + brane kinetic terms?Warped extra dimension + brane kinetic terms?

Lightest KK mode @ 300 GeV, strong WW @ 6-7 TeV




