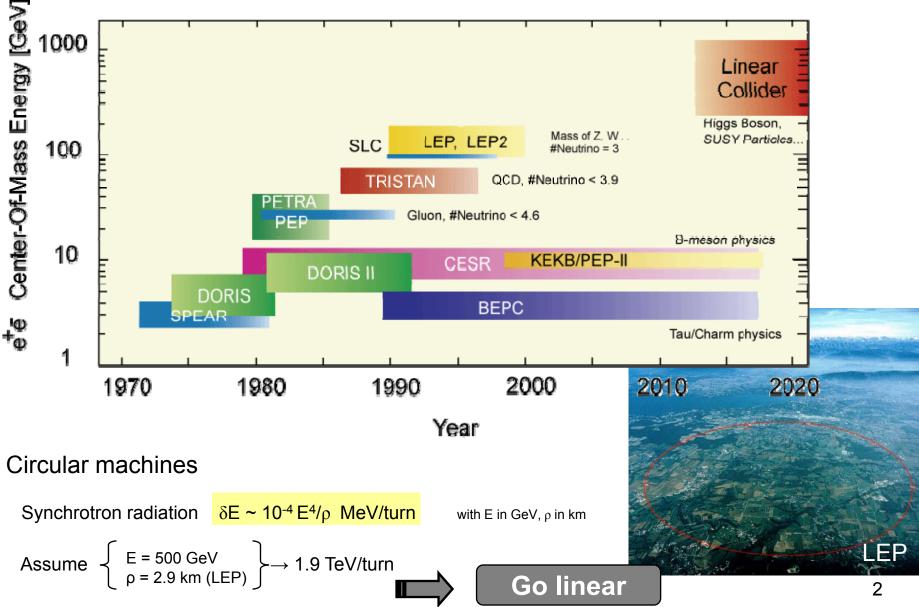
The International Linear Collider and its Detectors



José Repond Argonne National Laboratory

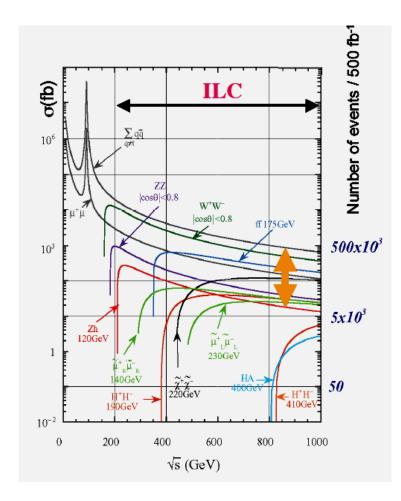
International Conference on Particle Physics In memoriam Engin Arik and collegues İstanbul, Turkey October 27 – 31, 2008

Lepton Colliders of the Past

The International Linear Collider

Baseline Machine

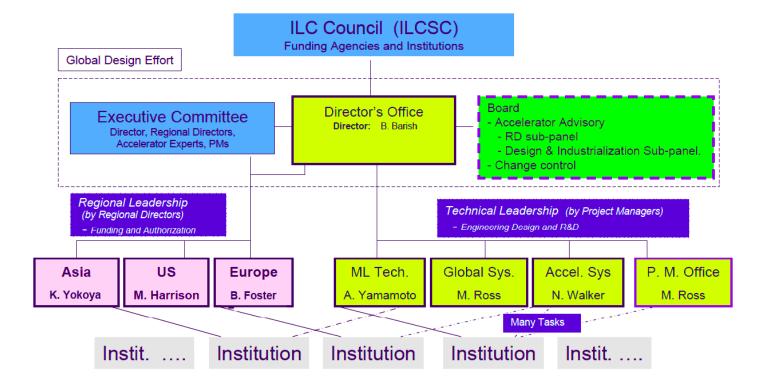
 E_{CM} of operation 200 – 500 GeV Luminosity and reliability for 500 fb⁻¹ in 4 years Energy scan capability with <10% downtime Beam energy precision and stability below 0.1% Electron polarization of >80% E_{CM} down to 90 GeV for calibration


Upgrades

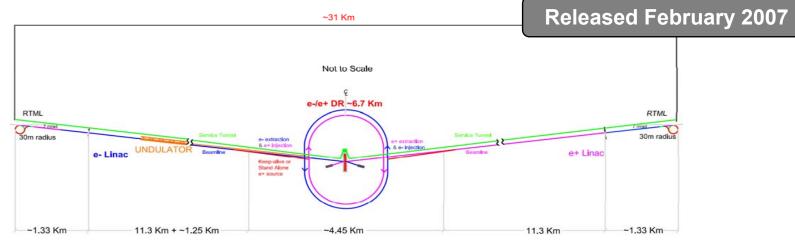
 E_{CM} about 1 TeV Capability of running at any E_{CM} < 1 TeV \pounds and reliability for 1 ab⁻¹ in 3 – 4 years

As defined in the

International Scope Document


See www.fnal.gov/directorate/icfa/LC_parameters.pdf

Options


Extend to 1 ab⁻¹ at 500 GeV in ~2 years e⁻e⁻, $\gamma\gamma$, e⁻ γ operation e⁺ polarization ~ 50% Giga-Z with \mathcal{L} = several 10³³ cm⁻²s⁻¹ WW – threshold scan with \mathcal{L} = 10³³ cm⁻²s⁻¹ 3

Coordination of Accelerator Design: GDE

Now counting ~500 members

The ILC Reference Design Report

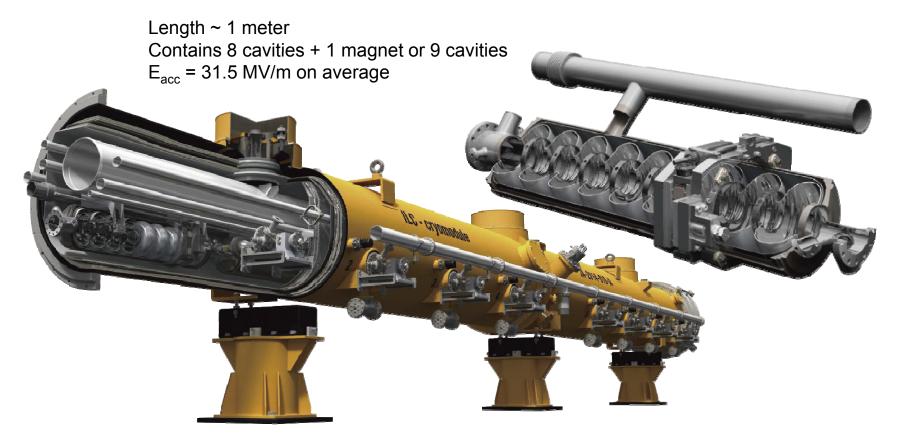
Schematic Layout of the 500 GeV Machine

Two 11 km superconducting linacs operating at 31.5 MV/m for E_{cm} = 500 GeV

Dual tunnels for safety and availability All tunnels ~ 72.5 km $\,$

Centralized injector

Circular damping rings for both electrons and positrons Undulator-based positron source within the e⁻ linac Polarized electrons with P ~ 80%

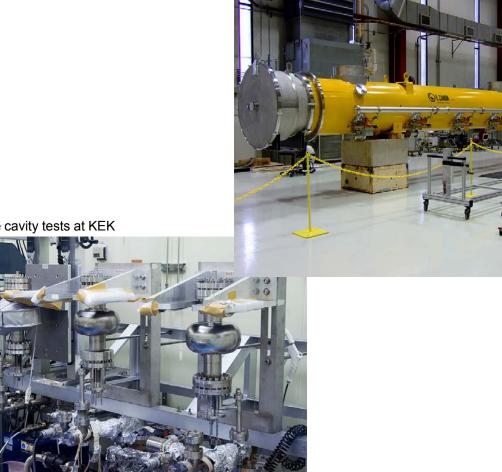

Single interaction region with 14 mrad crossing angle

```
Design Luminosity = 2 \cdot 10^{34} cm<sup>-2</sup>s<sup>-1</sup>
Repetition rate f = 5 Hz
```

2 detectors in push-pull configuration

ILC Cryomodules for the Main Linacs

Cryomodule



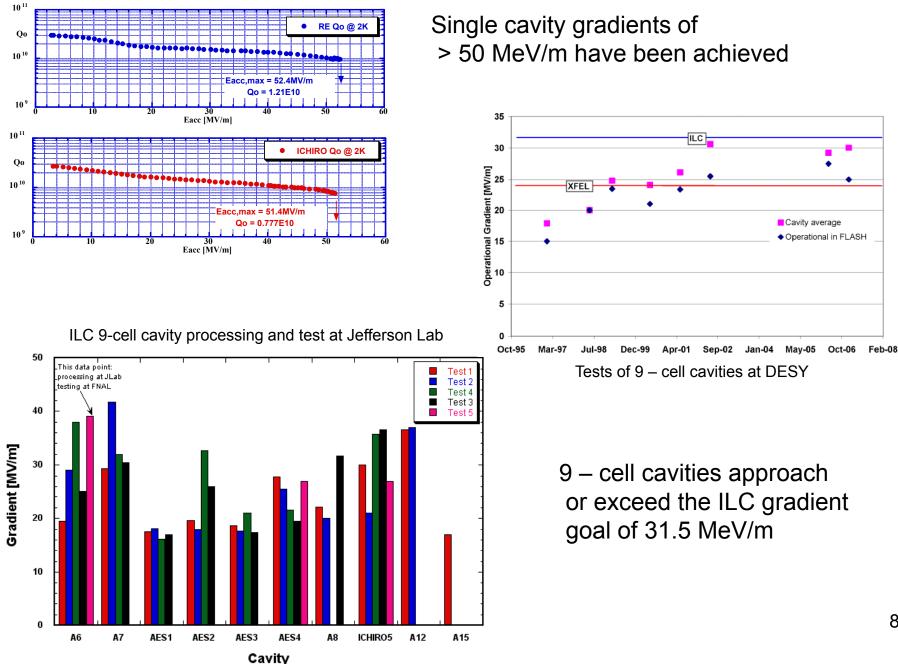
Cryostats

~1700 cryostats serving ~16,000 cavities 3 cryostats to be driven by one 10 MW L-based klystron In main linacs 560 RF units in total 6

ILC High-Gradient Cavity R&D

Basic infrastructure for cavity manufacturing and testing in Asian, European and US laboratories

Cryomodule built at FNAL with DESY cooperation


New electro-polishing facility at Argonne

Single cavity tests at KEK

Single cavity tests at KEK

Status and Plans (accelerator)

Two stage technical design phase (TDP)

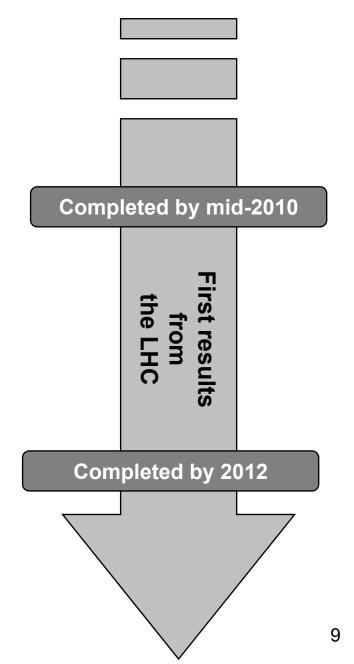
Phase I

Demonstrate 'Technical Feasibility' Perform high-priority risk-mitigating R&D

Gradients of 31.5 MeV/m with a 50% yield Mitigation of electron cloud effects

Value engineering in selected areas

Phase II


Demonstrate 'Technical Credibility' Complete remaining critical R&D

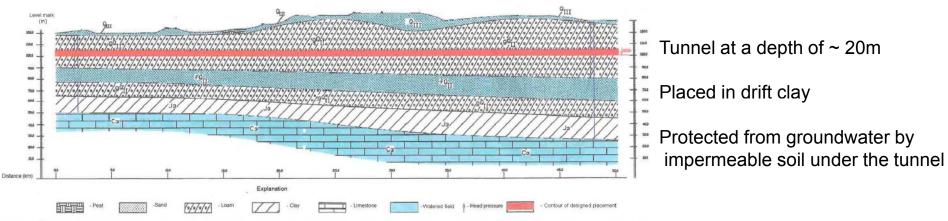
→ New baseline design

Develop a project implementation plan

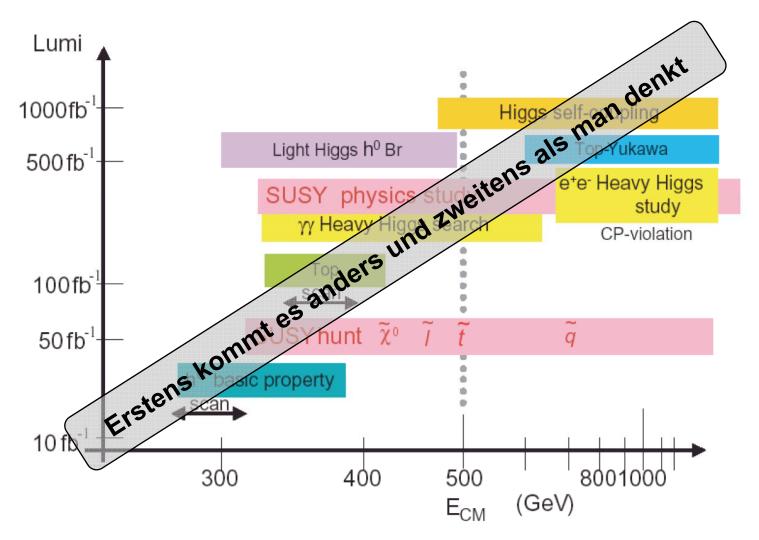
Siting Industrialization Funding...

Report which can be handed over to governments

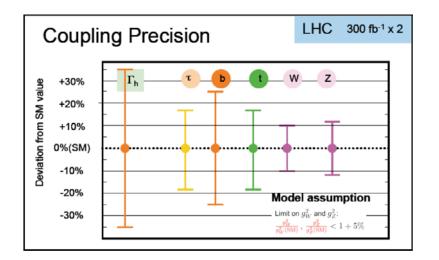
Possible sites

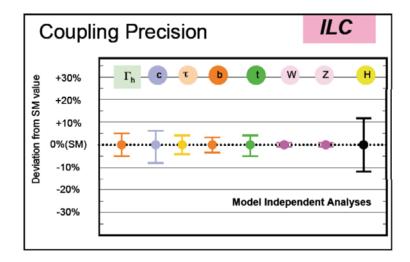

Usual suspects

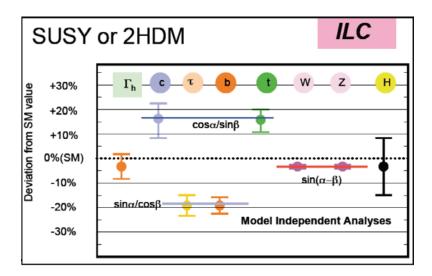
CERN – Geneva - Switzerland DESY – Hamburg – Germany FNAL – Batavia – Illinois Japan (several sites)


New on the scene

JINR – Dubna – Russia




ILC Physics

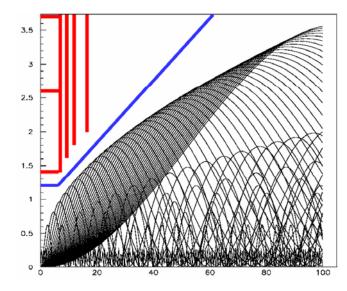


Broad spectrum of physics beyond the current Standard Model Specifics to be determined with LHC results

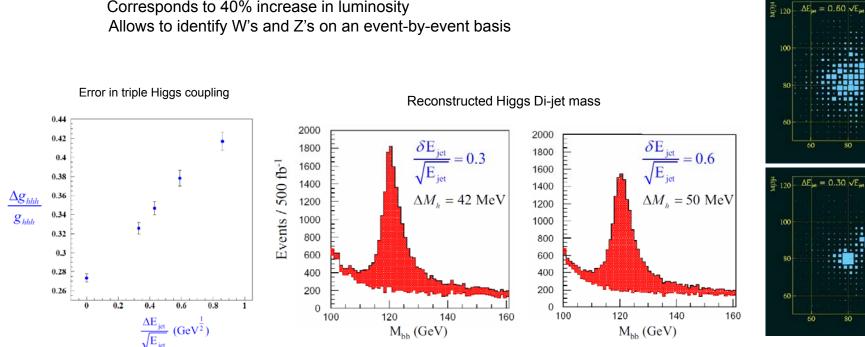
ILC as a Precision Machine: Higgs coupling

Precision will be needed to identify new particles and disentangle models beyond the Standard Model

Detector Challenges at the ILC


Backgrounds at low angle and small radii

2-photon backgrounds Beamstrahlung e⁺e⁻ pairs


Jet Energy resolution

Important for many measurements $\sigma_{\text{Ejet}}/E_{\text{jet}} = 60\%/\sqrt{E} \rightarrow 30\%/\sqrt{E}$

Corresponds to 40% increase in luminosity

Envelope of e+e- pair bkgr in 5 tesla field

The ILC Environment

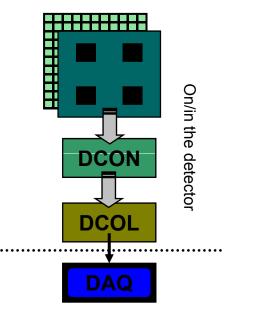
High rates at low angles and close to beam pipe

Low rates in barrel

Order of 1 event/sec

Train structure

New Trends in Detector Concepts


Embedded (front-end) electronics

Front-end of readout electronics part of active detector Digitization on the active element Only optical link to count house(?)

Power pulsing

Reduces power to front-end electronics between trains Reduces power by factor ~100 Reduces need for active cooling (material budget)

Machine parameter	Value	
# trains/sec	5	
Train spacing	199 msec	
# bunches/train	2625	
Bunch spacing	369 nsec	
Length of train	969 µsec	

Measurement of Jets

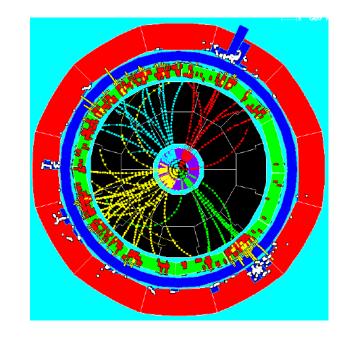
Hadronic jets contain both photons and hadrons

Large fluctuations in fraction of photons

Different response to photons and hadrons $e/h \neq 1$

e.g. CDF calorimeter e/h ~ 1.4

Significant degradation of jet energy resolution

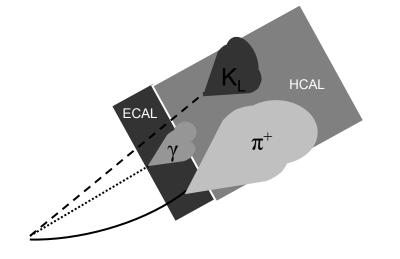

Improvement through compensation e/h ~ 1

Achieved through careful tuning of scintillator/absorber thicknesses

e.g. ZEUS calorimeter $~\sigma_{em} \sim 20\%/\sqrt{E}~$ and $\sigma_{jet} \sim 50\%/\sqrt{E}$

Degradation of electromagnetic resolution

Can we do better?



Two Different Philosophies

Particle Flow Algorithms

Use tracker to measure momentum of **charged particles** electromagnetic calorimeter to measure **photons** entire calorimeter to measure **neutral hadrons** (n, K_L⁰) Reconstruct jet energy as some over momenta and energies

Major challenge: identification of calorimeter energy deposits as coming from charged or neutral particles

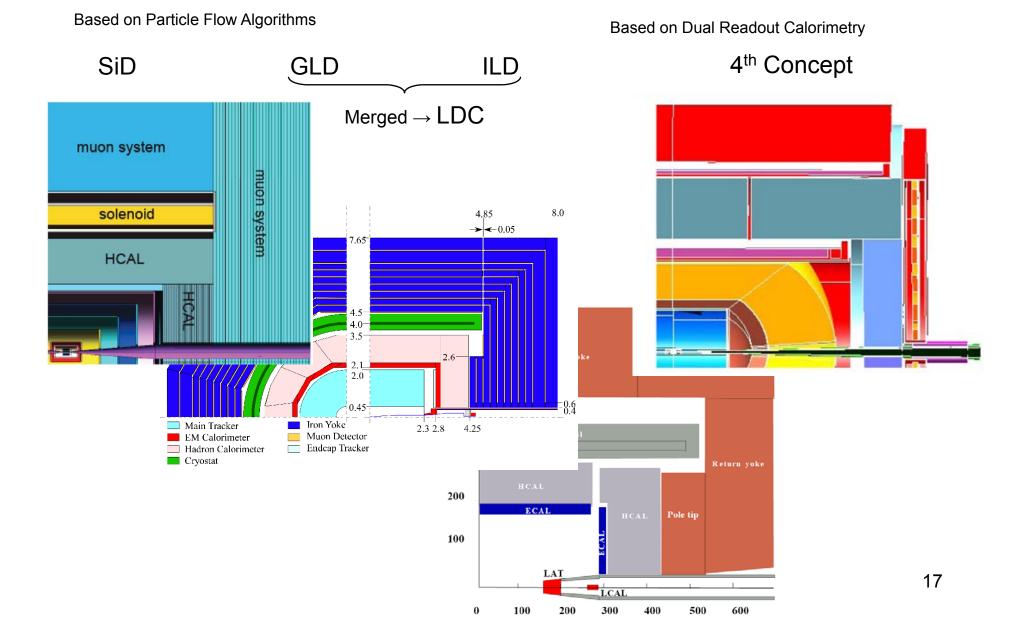
 \rightarrow Calorimeters with extremely fine segmentation

Dual Readout Calorimetry

Measures both

scintillation light ← all particles Čerenkov light ← mostly e[±] (em component)

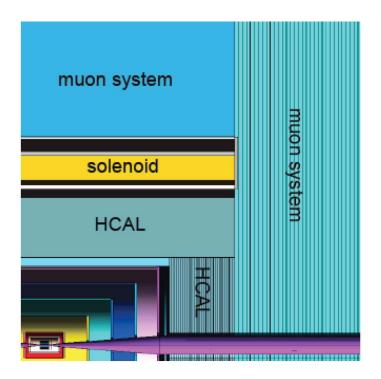
to determine electromagnetic fraction of the jet and to apply the appropriate calibration

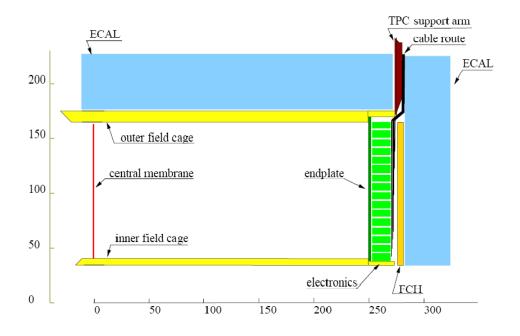


Major challenge: development of technology providing a measurement of both scintillation and Čerenkov light

 \rightarrow Fibers, (new) crystals

Both camps confident that their approach is superior


The Four ILC Detector Concepts



The PFA Detector Concepts

Similarities between SiD and LDC

Pixel vertex detector Highly granular electromagnetic calorimeter Highly granular hadron calorimeter Calorimeters located inside the coil High magnetic field between 3 – 5 Tesla Instrumented return yoke for muon identification (Joint effort on) forward calorimetry

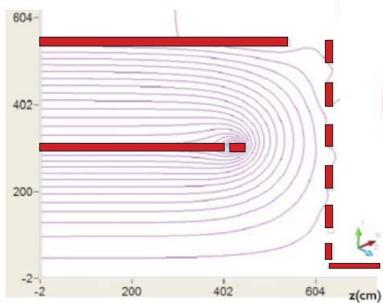
Major difference between SiD and LDC

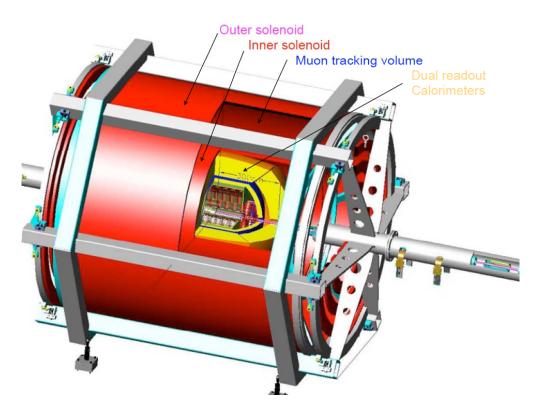
SiD – Pure Silicon tracker LDC – Time Projection Chamber + Silicon layers

The 4th Concept

Main features

Vertex detector (similar to PFA detectors Tracking detector


Silicon or TPC or drift chamber ?


Dual readout calorimeter

Crystal electromagnetic calorimeter Hadronic calorimeter with fibers

Dual solenoid (no return yoke)

R(cm)

Why a dual solenoid?

Eliminates costly iron return yoke

Is a second coil cheaper than a return yoke?

Can be easily instrumented

Measurement of muon momentum

Detector R&D

Many R&D activities for ALL detector subsystems

Personal selection of highlights

Vertex Detector studies

Tracking detectors

PFA development

Highly segmented electromagnetic calorimeters

Highly segmented hadronic calorimeters

Total absorption and dual readout calorimeters

Vertex Detectors

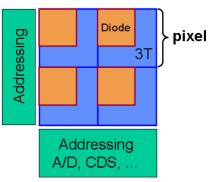
Goal is to

- a) minimize mass, power consumption, dead zones, dead time, occupancy, noise susceptibility
- b) radiation hardness
- c) provide the best possible impact parameter resolution

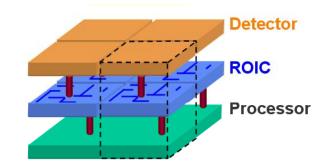
$$\sigma_{IP} = a + b/p \cdot \sin^{3/2}\theta$$

Pixel sizes ~ 25 x 25 μ m² needed

Technologies being developed/investigated/perfected


CCDs, DEPFETs, CMOS sensors, 3D – silicon technologies...

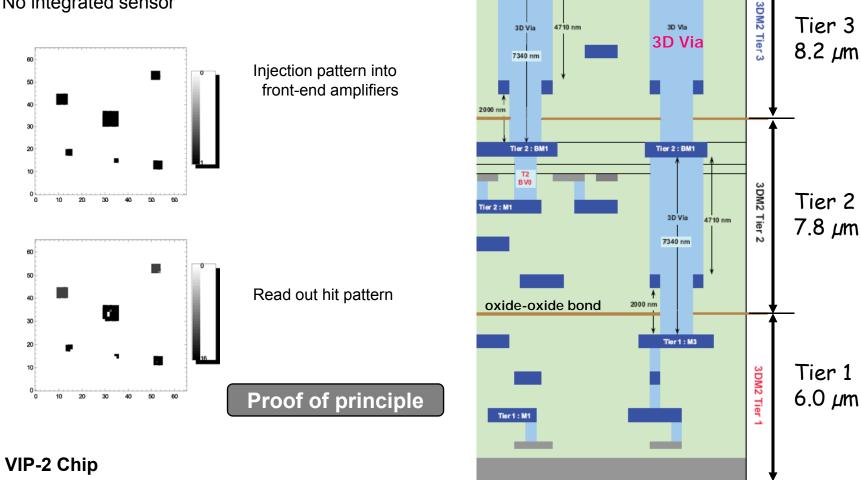
ПП


e.g. 3D - Vertical Integrated Circuits

'Conventional' MAPS

Sensor and pixel electronics share area \rightarrow fill factor loss Control and support electronics on outside

Accelerator	a (μm) b ($\mu m \cdot Ge$)	
LEP	25	70
SLD	8	33
LHC	12	70
RHIC-II	13	19
ILC	< 5	< 10

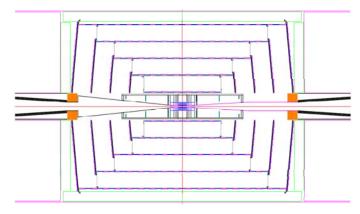


3D – Vertical Integrated Circuits

Fully active sensor area Independent optimization of sensor and readout Fabrication optimized by layer function Minimal inactive chip boundaries

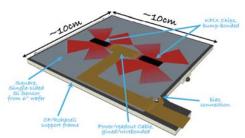
Fermilab's VIP-1 Chip

3 metal layers per tier 20 x 20 μ m² pixels 64 x 64 pixel array No integrated sensor

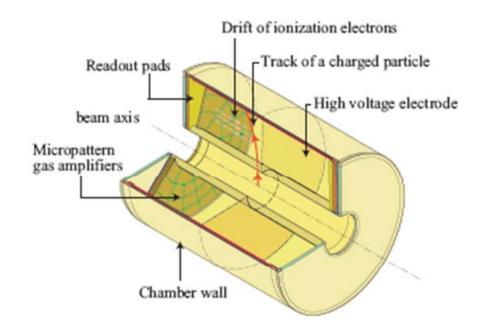


Submitted on October 16, 2008

Tracking Detectors


SiD's Silicon Tracker

5 layer barrel with 4 planes in forward direction


93.5 x 93.5 mm² wafers

50 μm pitch 1850 channels

Development of KPiX front-end ASIC

1024 readout channels 14-bit ADC Integration time 0.5 – 1.0 μs

LDC's Time Projection Chamber

R&D within LC-TPC collaboration

24+ institutes from all 3 regions

Choice of readout technologies

GEMs, Micromegas, Pixel – Silicon detectors Improved readout segmentation

Traditional multiwire chambers ~ 1 cm Precision gas detectors ~ 1mm

Development of Particle Flow Algorithms

The idea

Measure charged particles with tracker Measure neutral particles with calorimeter

Particles in jets	Fraction of energy	Measured with	Resolution [σ^2]	Perfe
Charged	65 %	Tracker	Negligible	ן 🗸
Photons	25 %	ECAL with 15%/√E	0.07 ² E _{jet}	18% /*
Neutral Hadrons	10 %	ECAL + HCAL with 50%/√E	0.16 ² E _{jet}	J

ל /√E

ect

Reconstruction of the jet energy

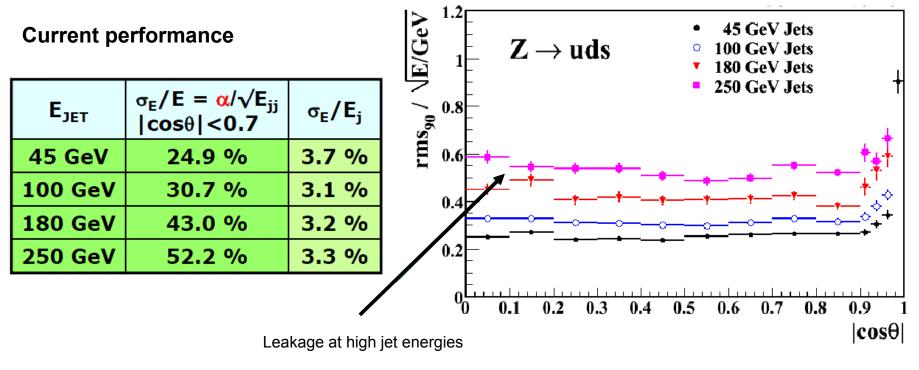
$$\sigma_{\rm E}/E_{\rm jet} = \sigma_{\gamma}/\sqrt{E_{\gamma}} + \sigma_{\rm nh}/\sqrt{E_{\rm nh}} + {\rm confusion}$$

PFAs work

Successfully applied at ALEPH, ZEUS, CDF...

At the ILC

PFAs not an after-thought Detector designs being optimized for their applications Maximum allowed confusion for σ_E/E_{iet} = 3%


E _{jet} (GeV)	Confusion
50	1.59%
100	2.40%
250	2.78%
500	2.89%

PANDORA PFA

Developed by

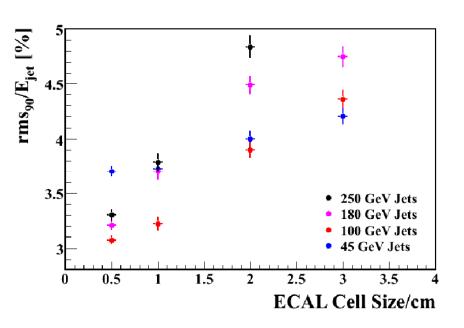
Mark Thomson (University of Cambridge)

ILC performance goal achieved

Open question

Are hadronic showers simulated properly? (see later) 25

Is there room for improvement?


At low energies, resolution dominated by calorimeter resolution At high energies, confusion more important

Contribution	σ _ε /Ε			
	45 GeV	100 GeV	180 GeV	250 GeV
Calo. Resolution	3.1 %	2.1 %	1.5 %	1.3 %
Leakage	0.1 %	0.5 %	0.8 %	1.0 %
FullLDCTracking	0.7 %	0.7 %	1.0 %	0.7 %
Photons "missed"	0.4 %	1.2 %	1.4 %	1.8 %
Neutrals "missed"	1.0 %	1.6 %	1.7 %	1.8 %
Charged Frags.	1.2 %	0.7 %	0.4 %	0.0 %
"Other"	0.8 %	0.8 %	1.2 %	1.2 %

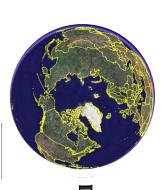
Studies of detector design parameters

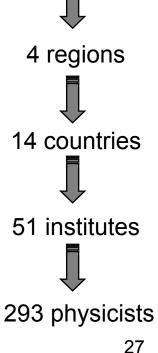
Performance as function of B-field strength Dependence on ECAL inner radius Dependence on HCAL cell size Dependence on ECAL cell size

. . . .

CALICE Collaboration

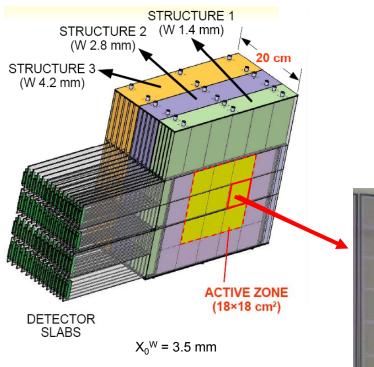
Goals


Development and study of finely segmented calorimeters for PFA applications


Strategy

Study of physics, proof of technological approach \rightarrow **physics prototypes** Development of scalable prototypes \rightarrow **technical prototypes**

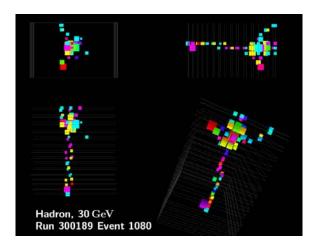
Projects


Calorimeter	Technology	Detector R&D	Physics Prototype	Technical Prototype
ECALs	Silicon - Tungsten	Well advanced	Exposed to beam	Design started
	MAPS - Tungsten	Started		
	Scintillator - Lead	Well advanced	Exposed to beam	
HCALs	Scintillator - Steel	Well advanced	Exposed to beam	Design started
	RPCs - Steel	Well advanced	Being constructed	(Design started)
	GEMs- Steel	Ongoing		
	MicroMegas - Steel	Started		
TCMTs	Scintillator - Steel	Well advanced	Exposed to beam	

Silicon – Tungsten ECAL

Physics prototype

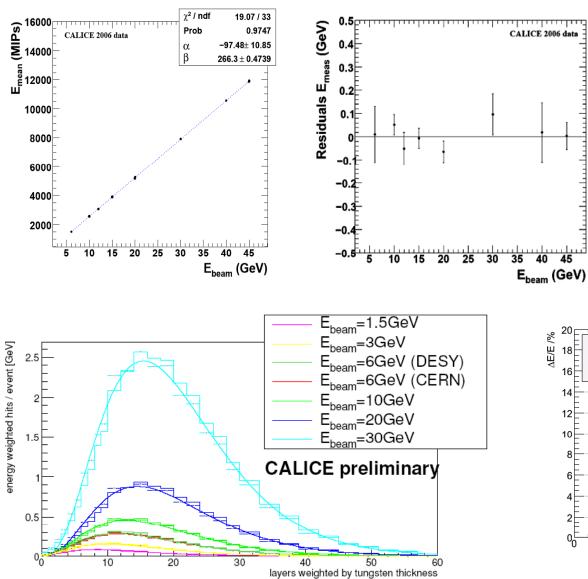
3 structures with different W thicknesses
30 layers; 1 x 1 cm² pads
18 x 18 cm² instrumented
→ 9720 readout channels



Tests at DESY/CERN/FNAL

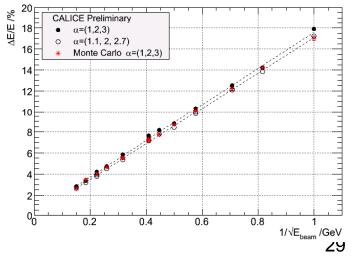
Electrons 1 – 45 GeV Pions 1 – 180 GeV

Electronic Readout


Front-end boards located outside of module Digitization with VME – based system (off detector)

Results from Test Beam

Response to electrons

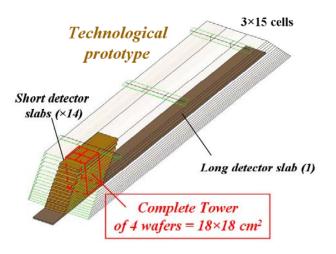

Linearity better than ± 1%

Resolution

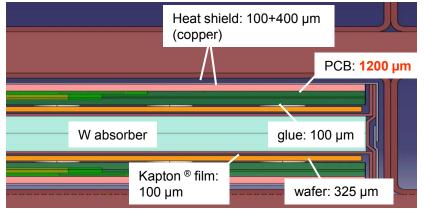
$\Delta E/E=(17.13/\sqrt{E/GeV})+0.54)\%$

agrees well with MC simulation

Longitudinal shower shape agrees well with MC simulation



Towards a Technical Prototype

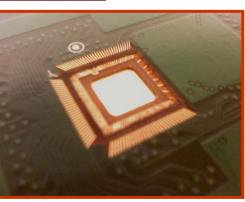

Study and validation of technological solutions

Sizes of structures Molding process Cooling system New electronic readout scheme Industrialization Cost

Structure

Absorber = 20×2.1 mm + 9×4.2 mm ($23 \times X_0$) Thickness of slab = 6.8 mm Thickness of active gap = 2.6 mm Number of channels = 37890

Sensor


 $9 \times 9 \text{ cm}^2$ wafers 0.5 x 0.5 cm² pads

Readout

Skiroc ASIC 64 channels/chip 12 – bit ADC on chip Chip embedded into PCB board

Time scale

Mechanical tests (cooling) during remainder of 2008 Chips available summer 2009 30 Tests in later part of 2009

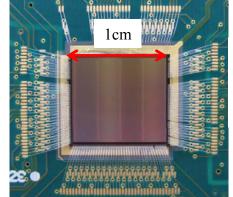
Monolithic Active Pixel Detectors – MAPS

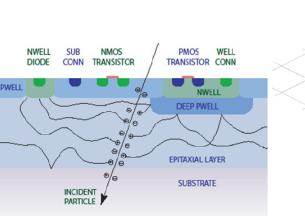
Ultimately segmented calorimeter

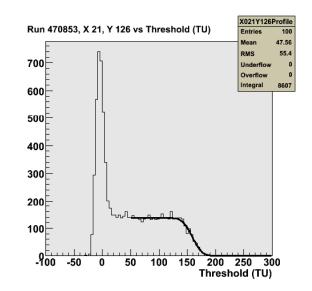
Make small pixels, such that probability of more than one hit is small

- \rightarrow 50 x 50 μ m² pixels
- \rightarrow 10¹² channels for ILC detector ECAL
- \rightarrow Only hit/no hit information (digital readout)

CMOS MAPS detectors

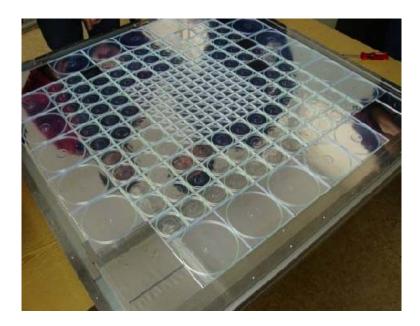

Integrates readout into pixel


First prototype TPAC 1.0 sensor


Total area 1 x 1 cm² 168 x 168 pixels each with an area of 50 x 50 μ m² 0.180 μ m CMOS process Hits stored with 13 – bit time stamp First tests encouraging

e.g. Threshold scan with laser

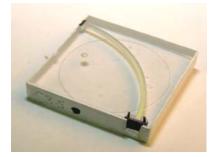
First look at showers in 2009


Scintillator – Steel Hadron Calorimeter

First calorimeter to use SiPMs

Physics prototype

38 steel plates with a thickness of 1.2 X_0 each Scintillator pads of 3 x 3 \rightarrow 12 x 12 cm² \rightarrow ~8,000 readout channels Scintillator 5 mm thick

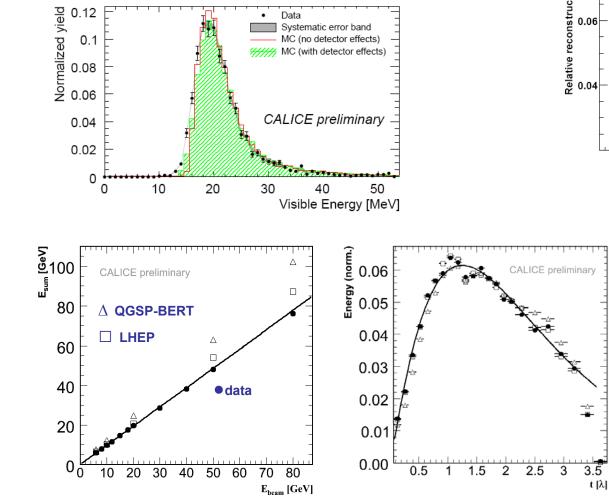


Electronic readout

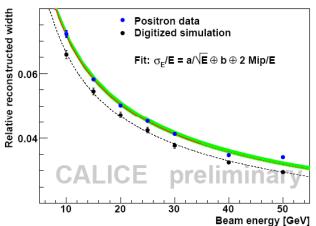
Silicon Photomultipliers (SiPMs) ← work in B-fields Digitization with VME-based system (off detector)

Tests at DESY/CERN/FNAL

Muons (for calibration) Electrons 1 – 45 GeV Pions 1 – 180 GeV/c



Results from Test Beam


Calibration with Muons

Reasonable agreement with simulation Effects such as SiPM saturation included in simulation

Response to electrons

Trend adequately simulated Prediction somewhat better than data

Tests with pions

Response quite linear Precise measurement of longitudinal shower profiles

Comparison with 2 different hadron shower

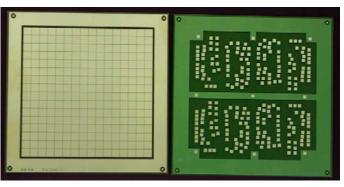
 \rightarrow Some disagreement \rightarrow Too early to draw firm conclusions 33

Towards a Technical Prototype

Next steps involve

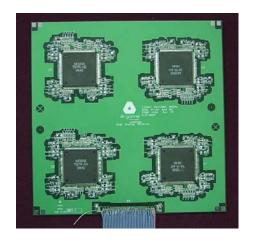
Integration of electronic readout with active element Consistent design of scalable module Implementation of all peripherals: cooling, LV power etc.

Calibration and Detector-Interface boards by end of 2008 Full detector slab by sommer/fall 2009 Beam tests in 2010 34


RPC – Steel Hadron Calorimeter

Novel idea: Digital Hadron Calorimeter (DHCAL)

Replace high-resolution readout of a small number of towers with the single-bit (digital) readout of a large number of channels (~10⁷)


Use Resistive Plate Chambers (RPCs) as active element

Simple in design Easy to assemble High efficiency Low noise rates Reliable Cheap Slow

Readout of 1 x 1 cm² pads

Energy reconstructed as function of N_{hit}

Development of electronic readout system

Centered around the DCAL chip

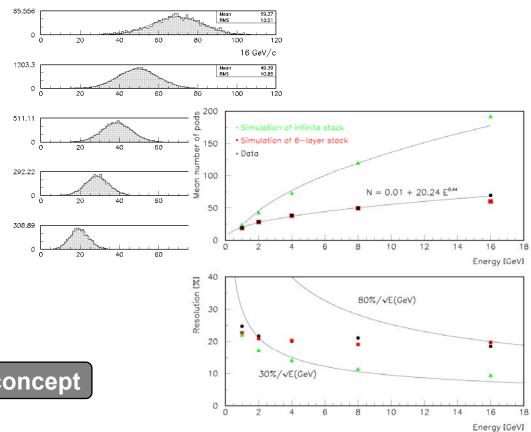
Developed specifically for the DHCAL readout Reads out 64 channels Variable, common threshold between 5 ÷ 700 fC Output is hit pattern + time stamp (100 ns)

Remainder of readout system includes

Pad boards, Front-end boards, Data concentrators, Data collectors and a Tming and Trigger module

Contraction of the second seco

Results from Test Beam


Assembled small prototype calorimeter

Up to 10 RPCs, each with an instrumented area of 16 x 16 cm^2 Steel absorber plates of ~1.2 X_0

Measurements with cosmics rays and $\mu\mbox{'s}$ in test beam

Measurement of noise rate Measurement of efficiency and pad multiplicity

A single μ

A π^+ shower

Measurements with positrons

Only 6 layers in stack Response to 1,2,4,8, and 16 GeV e⁺ Simulation in good agreement

First validation of DHCAL concept

Construction of a DHCAL Physics Prototype

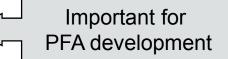
Description

40 layers each 1 x 1 m² ~400,000 readout channels Inserted into CALICE HCAL test structure

Planned tests

In Fermilab test beam Tests with μ , π^{\pm} , e^{\pm} Comparison with various MC models of hadronic showers Comparison with scintillator – analog HCAL (CALICE)

Status


RPC R&D completed DCAL ASIC ordered (need 6,000 chips) Pad – ,Front-end and Data concentrator board design completed Remainder of system identical to small scale test

Time scale

First layer by end of CY 2008 Ten layers early in 2009 Remainder later in 2009 Data analysis in 2009/2010

✓ Test beam run
✓ plan to be determined

Total Absorption and Dual Readout Calorimeters

Different apprach from PFAs to improve the jet energy resolution

The problem

Hadron showers (jets) contain both an

electromagnetic component (π^0) non-electromagnetic component (π^{\pm} , p...)

Calorimeter response to these typically not the same (e/h \neq 1) < f_{em} > is energy dependent \rightarrow non-linear response to hadrons Large fluctuations in $f_{em} \rightarrow$ poor resolution (In addition there are fluctuations in the nuclear break up energy loss)

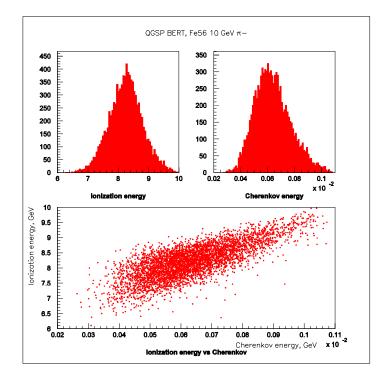
Underlying idea

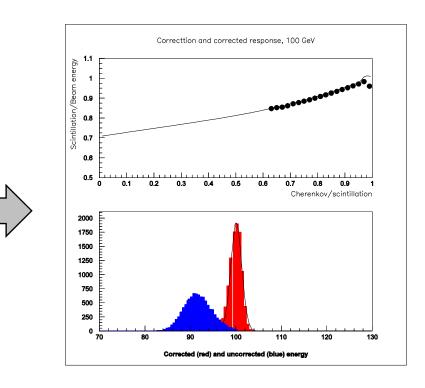
Measure scintillation light \leftarrow contributions from all ionizing particles in shower (e, π , p...) Measure Čerenkov light \leftarrow contributions mostly from e[±]

 \rightarrow allows to determine the electormagnetic fraction f_{em} of a shower (jet)

 \rightarrow apply the appropriate corrections

Conceptual design of a dual readout calorimeter


6 layers of 5 x 5 x 5 cm³ crystals
3 embedded Si pixel detectors for e/γ position/direction
9 layers of 10 x 10 x 10 cm³ crystals
4 (or 8) photodetectors/crystal: half of them with filters for Čerenkov light


Monte Carlo simulation

Assumed crystals build of various materials with a density of 8 g/cm³

Optical properties defined by refractive index n

Summed up scintillation (= ionization) and Čerenkov lights (light collection assumed to be 100%)

Results for single particles

Good linearity of the corrected response Excellent resolution for single particles

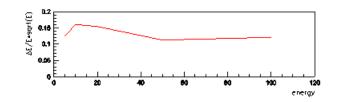
 $\sigma_{\rm E}/{\rm E} \sim 12\%/\sqrt{\rm E}$ for pions (in simulation)

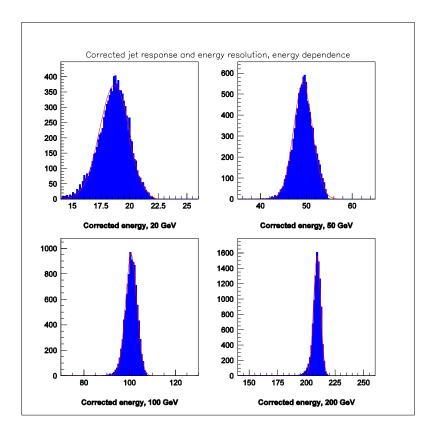
No evidence of a constant term up to 100 GeV

Results for hadronic jets

Excellent resolution

 $\sigma_{Ejet}/E_{jet} \sim 22\%/\sqrt{E}$ (in simulation)

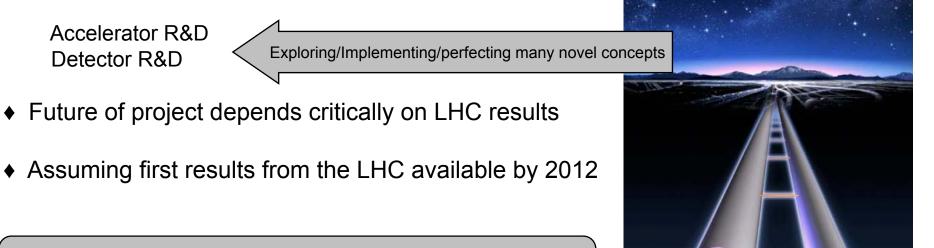

Open questions


Suitable crystal

High density Affordable Good light propagation

Light propagation

To be implemented in simulation



Not yet a proven concept...

Concluding Remarks

- Despite recent set-back in funding (UK and US), the physics priority of the ILC remains as strong as ever
- The ILC is the highest priority project for the future of particle physics
- Large and worldwide effort in both

Machine and detector designs will be mature enough to initiate construction within a short time span

Acknowledgments

Everyone, whose slides/material I have used. In particular

Marc, Anduze, Barry Barish, Jim Brau, Paul Dauncey, Marcel Demarteau, Julien Fleury, Adam Para, Mark Thomson, Nabu Toge, David Ward, Richard Wigmans...